Skip to main content

Vision-Based Online Trajectory Generation and Its Application to Catching

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 4))

Abstract

In this paper, a method for vision-based online trajectory generation is proposed. The proposed method is based on a nonlinear mapping of visual information to the desired trajectory, and this nonlinear mapping is defined by learning based on constraints of dynamics and kinematics. This method is applied to a catching task, and a reactive and flexible motion is obtained owing to real-time high-speed visual information. Experimental results on catching a moving object using a high-speed vision chip system are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, J. (1991). Outline for a theory of intelligence. IEEE Trans. on Syst., Man, and Cybern., 21(3):473–509.

    Article  MathSciNet  Google Scholar 

  2. Allen, P., Yoshimi, B., and Timucenko, A. (1991). Real-time visual servoing. Proc. IEEE Int. Conf. Robot. and Automat., pages 2376–2384.

    Google Scholar 

  3. Bard, C., Turrell, Y., Fleury, M., Teasdale, N., Lamarre, Y., and Martin, O. (1999). Deafferentation and pointing with visual double-step perturbations. Exp. Brain Res., 125:410–416.

    Article  Google Scholar 

  4. B. Ghosh, N. Xi, and T.J. Tarn (1999). Control in robotics and automation: sensor-based integration. ACADEMIC Press.

    Google Scholar 

  5. Büehler, M., Koditshek, D., and Kindlmann, P. (1994). Planning and control of robotic juggling and catching tasks. Int. J. of Robot. Res., 13(2):101–118.

    Article  Google Scholar 

  6. Hong, W. and Slotine, J. (1995). Experiments in hand-eye coordination using active vision. Proc. 4th Int. Symp. on Experimental Robot.

    Google Scholar 

  7. ai]Ishikawa, M., Morita, A., and Takayanagi, N. (1992). High speed vision system using massively parallel processing. Proc. IEEE Int. Conf. Intelligent Robot. and Systems, pages 373–377.

    Google Scholar 

  8. Komuro, T., Ishii, I., and Ishikawa, M. (1997). Vision chip architecture using general-purpose processing elements for 1ms vision system. Proc. IEEE Int. Workshop on Computer Architecture for Machine Perception, pages 276–279.

    Google Scholar 

  9. Kovio, A. and Houshangi, N. (1992). Real-time vision feedback for servoing robotic manipulator with self-tuning controller. IEEE Trans. of Syst., Man, and Cybern., 21(1):134–142.

    Article  Google Scholar 

  10. Nakabo, Y., Ishikawa, M., Toyoda, H., and Mizuno, S. (2000). 1ms column parallel vision system and its application of high speed target tracking. Proc. IEEE Int. Conf. Robot. and Automat., pages 650–655.

    Google Scholar 

  11. Namiki, A. and Ishikawa, M. (2001). Sensory-motor fusion architecture based on high-speed sensory feedback and its application to grasping and manipulation. Proc. Int. Symp. Robotics, pages 784–789.

    Google Scholar 

  12. Namiki, A., Nakabo, Y., Ishii, I., and Ishikawa, M. (1999a). 1ms grasping system using visual and force feedback. Video Proc. IEEE Int. Conf. Robot. Automat.

    Google Scholar 

  13. Namiki, A., Nakabo, Y., Ishii, I., and Ishikawa, M. (1999b). High speed grasping using visual and force feedback. Proc. IEEE Int. Conf. Robot. Automat., pages 3195–3200.

    Google Scholar 

  14. Namiki, A., Nakabo, Y., Ishii, I., and Ishikawa, M. (2000). 1ms sensory-motor fusion system. IEEE/ASME Trans. Mechatron., 5(3):244–252.

    Article  Google Scholar 

  15. Sakaguchi, T., Fujita, M., Watanabe, H., and Miyazaki, F. (1993). Motion planning and control for a robot performer. Proc. IEEE Int. Conf. Robot. and Automat., 3:925–931.

    Google Scholar 

  16. Zhang, M. and Buehler, M. (1994). Sensor-based online trajectctory genera-tion for smoothly grasping moving objects. Proc. IEEE Int. Symp. Intelligent Control, pages 141–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Namiki, A., Ishikawa, M. (2003). Vision-Based Online Trajectory Generation and Its Application to Catching. In: Bicchi, A., Prattichizzo, D., Christensen, H.I. (eds) Control Problems in Robotics. Springer Tracts in Advanced Robotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36224-X_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-36224-X_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00251-2

  • Online ISBN: 978-3-540-36224-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics