Skip to main content

Towards Abstraction and Control for Large Groups of Robots

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 4))

Abstract

This paper addresses the problem of controlling a large number of robots required to accomplish a task as a group. We propose an abstraction based on the definition of a map from the configuration space of the robots to a lower dimensional manifold, whose dimension does not scale with the number of robots. The task to be accomplished by the team suggests a natural feedback control system on the group manifold. We show that, if mean and covariance matrix are chosen as group variables for fully actuated robots, it is possible to design decoupling control laws, i.e., the feedback control for a robot is only dependent on the state of the robot and the state of the group, therefore the communication necessary to accomplish the task is kept to a minimum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belta C., Kumar V. (2002) Trajectory design for formations of robots by kinetic energy shaping. In: IEEE International Conference on Robotics and Automation, Washington, DC, 2002

    Google Scholar 

  2. Desai J., Ostrowski J.P., Kumar V. (1998) Controlling formations of multiple mobile robots. In: Proc. IEEE Int. Conf. Robot. Automat., Leuven, Belgium, May, 1998. 2864–2869

    Google Scholar 

  3. Eren T., Belhumeur P.N., Morse A.S. (2002) Closing ranks in vehicle formations based rigidity. In: IEEE Conference on Decision and Control, Las Vegas, NV, December, 2002

    Google Scholar 

  4. Isidori A. (1995) Nonlinear Control Systems, 3rd edn. Springer-Verlag, London

    MATH  Google Scholar 

  5. Leonard N.E., Fiorelli E. (2001) Virtual leaders, artificial potentials, and coordinated control of groups. In: 40th IEEE Conference on Decision and Control, Orlando, FL, December, 2001. 2968–2973

    Google Scholar 

  6. Ogren P., Fiorelli E., Leonard N.E. (2002) Formations with a mission: stable coordination of vehicle group maneuvers. In: Proc. Symp. on Mathematical Theory of Networks and Systems, Notre Dame, IN, August, 2002

    Google Scholar 

  7. Olfati-Saber R., Murray R.M. (2002) Distributed cooperative control of multiple vehicle formations using structural potential functions. In: IFAC World Congress, Barcelona, Spain, July, 2002

    Google Scholar 

  8. Tabuada P., Pappas G.J., Lima P. (2001) Feasible formations of multi-agent systems. In: American Control Conference, Arlington, VA, June, 2001

    Google Scholar 

  9. Tanner H., Pappas G.J., Kumar V. (2002) Input-to-state stability on formation graphs. In: Proceedings of the IEEE International Conference on Decision and Control, Las Vegas, NV, December, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belta, C., Kumar, V. (2003). Towards Abstraction and Control for Large Groups of Robots. In: Bicchi, A., Prattichizzo, D., Christensen, H.I. (eds) Control Problems in Robotics. Springer Tracts in Advanced Robotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36224-X_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-36224-X_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00251-2

  • Online ISBN: 978-3-540-36224-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics