Skip to main content

Computational Models of the Amygdala and the Orbitofrontal Cortex: A Hierarchical Reinforcement Learning System for Robotic Control

  • Conference paper
  • First Online:
AI 2002: Advances in Artificial Intelligence (AI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2557))

Included in the following conference series:

Abstract

This paper presents biologically plausible computational models of brain areas involved in emotion processing and the decisionmaking process. In the models, the amygdala, the orbotofrontal cortex (OFC) and the basal ganglia work together as a multiple-level hierarchical reinforcement learning system. The amygdala decodes sensory cues into reward-related variables providing a reward-related abstract representation for the decision making process in the OFC, while the basal ganglia learn and execute subtask policies. Here we hypothesize how the amygdala may learn these representations. The models have been implemented in software to control a Khepera robot in a physical environment designed for comparison with animal behaviours. We show that the representation of principal emotion components in the reward function may lead to a more efficient learning algorithm than general Q learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function decomposition. J. Artificial Intelligence Research. 13 (2000) 227–303

    MATH  MathSciNet  Google Scholar 

  2. Sutton, R. S., Precup, D., Singh, S.: Between MDPs and Semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence. 112 (1999) 181–211

    Article  MATH  MathSciNet  Google Scholar 

  3. Krebs, J.R., Davies, N.B.: Behavioural ecology: an evolutionary. 3rd ed. Oxford [England] Boston, Blackwell Scientific Publications.(1991)

    Google Scholar 

  4. Rolls, E.T.: The brain and emotion. Oxford University Press. (1999)

    Google Scholar 

  5. Schultz, W.L., Tremblay, L., Hollerman, J.R.: Reward processing in primate orbitofrontal cortex and basla ganglia. Cerebral Cortex. 10 (2000) 272–283

    Article  Google Scholar 

  6. LeDoux, J.E.: Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Annu. Rev. Neurosci. 23 (2000) 155–184

    Article  Google Scholar 

  7. Schoenbaum, G., Chiba, A. A. and Gallagher, M.: Neural Encoding in Orbitofrontal Cortex and Basolateral Amygdala during Olfactory Discrimination Learning. J. Neuroscience. 19 (2000) 1876–1884

    Google Scholar 

  8. Malkova, L., Gaffan, D., Murray, E.A.: Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J. Neurosci. 17 (1997) 6011–6020

    Google Scholar 

  9. Bechara, A., Damasio, H., Damasio, A.R.: Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex. 10, (2000) 295–307

    Article  Google Scholar 

  10. Barto. A.G.: Adaptive critics and the basal ganglia. In J.L. Davis J.C. Houk and D.G. Beiser, editors, Models of information processing in the basal ganglia. MIT Press (1995) 215–232

    Google Scholar 

  11. Oja, E.: A simplified neuron model as a principal component analyzer. Journal of Mathmatical Biology. 15 (1982) 267–273

    Article  MATH  MathSciNet  Google Scholar 

  12. Watkins, C., Dayan, P.: Q-Learning. Machine Learning. 8 (1992) 279–292

    MATH  Google Scholar 

  13. Foley, J.D., Dam, A., Feiner, S.K., Hughes, J.F.: Computer graphics: principle and practice. 2nd ed. Addison-Wesley Publishing Company. (1996)

    Google Scholar 

  14. Rolls, B.J., Rolls, E.T.: Thirst. Cambridge University Press. (1982)

    Google Scholar 

  15. Gadanho S.C., Hallam J.: Emotion-triggered learning in autonomous robot control. Cybernetics and Systems. 32 (2001) 531–559

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, W., Coggins, R. (2002). Computational Models of the Amygdala and the Orbitofrontal Cortex: A Hierarchical Reinforcement Learning System for Robotic Control. In: McKay, B., Slaney, J. (eds) AI 2002: Advances in Artificial Intelligence. AI 2002. Lecture Notes in Computer Science(), vol 2557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36187-1_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-36187-1_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00197-3

  • Online ISBN: 978-3-540-36187-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics