Contour Detection by Synchronization of Integrate-and-Fire Neurons

  • Etienne Hugues
  • Florent Guilleux
  • Olivier Rochel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2525)


We present a biologically inspired spiking neural network which is able to detect contours in grey level images by synchronization of neurons. This network is made of integrate-and-fire neurons, spaced on a triangular network, whose oriented receptive field is constructed by a wavelet which specifically detects edges. The neurons are excitatorily and locally connected between receptive fields that tend to detect the same contour. A contour, if its width is not too large, activates a chain of neurons, with some heterogeneity in the inputs. The capacity of a chain tosync hronize with respect tosuc h heterogeneity is studied. Synchronization on a contour is found to be possible for a sufficiently large width.


Receptive Field Contour Integration Grey Level Image Contour Detection Synchronization Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Field, D. J., Hayes, A., Hess, R. F.: Contour Integration by the Human Visual System: Evidence for a Local “Association Field”. Vision Res. 33 (1992) 173–193CrossRefGoogle Scholar
  2. 2.
    von der Malsburg, C.: The Correlation Theory of Brain Function. MPI Biphysical Chemistry, Internal Report 81-2. Reprinted in: Domany, E., van Hemmen, J., Schulten, K. (eds): Models of Neural Networks, Vol. 2 of Physics of Neural Networks. Springer-Verlag, New York (1994) 95–120Google Scholar
  3. 3.
    von der Malsburg, C., Schneider, W.: A Neural Cocktail-Party Processor. Biol. Cybern., 54 (1986) 29–40CrossRefGoogle Scholar
  4. 4.
    Engel, A. K., König, P., Singer, W.: Direct Physiological Evidence for Scene Segmentation by Temporal Coding. Proc. Natl. Acad. Sci. USA 88 (1991) 9136–9140Google Scholar
  5. 5.
    Singer, W.: Neuronal Synchrony: a Versatile Code for the Definition of Relations? Neuron 24 (1999) 49–65CrossRefGoogle Scholar
  6. 6.
    Hubel, D. H., Wiesel, T. N.: Receptive Fields, Binocular Interaction and Functionnal Architecture in the Cat’s Visual Cortex. J. Physiol. (London) 160 (1962) 106–154Google Scholar
  7. 7.
    Li, Z.: A Neural Model of Contour Integration in the Primary Visual Cortex. Neural Comput. 10 (1998) 903–940CrossRefGoogle Scholar
  8. 8.
    Yen, S.-C., Finkel, L.: Extraction of Perceptually Salient Contours by Striate Cortical Networks. Vision Res. 38 (1998) 719–741CrossRefGoogle Scholar
  9. 9.
    Yen, S.-C., Finkel, L. H.: Identification of Salient Contours in Cluttered Images. In: Computer Vision and Pattern Recognition (1997) 273–279Google Scholar
  10. 10.
    Choe, Y.: Perceptual Grouping in a Self-Organizing Map of Spiking Neurons. PhD thesis, Department of Computer Sciences, University of Texas, Austin. TR A101-292 (2001)Google Scholar
  11. 11.
    Petkov, N., Kruizinga, P.: Computational Models of Visual Neurons Specialised in the Detection of Periodic and Aperiodic Oriented Visual Stimuli: Bar and Grating Cells. Biol. Cybern. 76 (1997) 83–96CrossRefzbMATHGoogle Scholar
  12. 12.
    Flandrin, P.: Temps-Fréquence. Hermes, Paris, 2nd ed. (1998)Google Scholar
  13. 13.
    Dayan P., Abbott L. F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2001)Google Scholar
  14. 14.
    Tuckwell, H. C.: Introduction to Theoretical Neurobiology. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  15. 15.
    Mirollo, R. E., Strogatz, S. H.: Synchronization of Pulse-Coupled Biological Oscillators. SIAM J. Appl. Math. 50 (1990) 1645–1662MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tsodyks, M., Mitkov, I., Sompolinsky, H.: Pattern of Synchrony in Inhomogeneous Networks of Oscillators with Pulse Interactions. Phys. Rev. Lett. 71 (1993) 1280–1283CrossRefGoogle Scholar
  17. 17.
    Hansel, D., Neltner, L., Mato, G., Meunier, C.: Synchrony in Heterogeneous Networks of Spiking Neurons. Neural Comput. 12 (2000) 1607–1641CrossRefGoogle Scholar
  18. 18.
    Ren, L., Ermentrout, G. B.: Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbor Coupled Oscillators. SIAM J. Math. Anal. 29 (1998) 208–234MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Etienne Hugues
    • 1
  • Florent Guilleux
    • 1
  • Olivier Rochel
    • 1
  1. 1.LORIA, Université de Nancy 1Vandoeuvre-lès-NancyFrance

Personalised recommendations