Modeling Insect Compound Eyes: Space-Variant Spherical Vision

  • Titus R. Neumann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2525)


Insect compound eyes are highly optimized for the visual acquisition of behaviorally relevant information from the environment. Typical sampling and filtering properties include a spherical field of view, a singular viewpoint, low image resolution, overlapping Gaussian-shaped receptive fields, and a space-variant receptor distribution. I present an accurate and efficient compound eye simulation model capable of reconstructing an insect’s view of highly realistic virtual environments. The algorithm generates low resolution spherical images from multiple perspective views which can be produced at high frame rates by current computer graphics technology. The sensitivity distribution of each receptor unit is projected on the planar views to compensate for perspective distortions. Applications of this approach can be envisioned for both modeling visual information processing in insects and for the development of novel, biomimetic vision systems.


Retinal Image Sensitivity Distribution Aperture Angle Acceptance Angle Receptor Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Götz, K.G.: Die optischen übertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2 (1965) 215–221CrossRefGoogle Scholar
  2. 2.
    Land, M.F.: Visual acuity in insects. Annual Review of Entomology 42 (1997) 147–177CrossRefGoogle Scholar
  3. 3.
    Cliff, D.: The computational hoverfly: A study in computational neuroethology. In Meyer, J.A., Wilson, S.W., eds.: From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior (SAB’90), Cambridge, MA, MIT Press Bradford Books (1991) 87–96Google Scholar
  4. 4.
    Giger, A.D.: B-EYE: The world through the eyes of a bee ( Centre for Visual Sciences, Australian National University (1995)
  5. 5.
    van Hateren, J.H.: Simulations of responses in the first neural layers during a flight ( eye sim/index.html). Department of Neurobiophysics, University of Groningen (2001)
  6. 6.
    Tammero, L.F., Dickinson, M.H.: The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. Journal of Experimental Biology 205 (2002) 327–343Google Scholar
  7. 7.
    Mura, F., Franceschini, N.: Visual control of altitude and speed in a flying agent. In Cliff, D., Husbands, P., Meyer, J.A., Wilson, S.W., eds.: FromAnimals to Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive Behavior (SAB’94), Cambridge, MA, MIT Press Bradford Books (1994) 91–99Google Scholar
  8. 8.
    Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Learning view graphs for robot navigation. Autonomous Robots 5 (1998) 111–125CrossRefGoogle Scholar
  9. 9.
    Neumann, T.R., Bülthoff, H.H.: Insect inspired visual control of translatory flight. In Kelemen, J., Sosik, P., eds.: Advances in Artificial Life, Proceedings of ECAL 2001. Volume 2159 of LNCS/LNAI., Springer-Verlag, Berlin (2001) 627–636CrossRefGoogle Scholar
  10. 10.
    Mallot, H.A., von Seelen, W., Giannakopoulos, F.: Neural mapping and space-variant image processing. Neural Networks 3 (1990) 245–263CrossRefGoogle Scholar
  11. 11.
    Greene, N., Heckbert, P.S.: Creating raster Omnimax images from multiple perspective views using the elliptical weighted average filter. IEEE Computer Graphics and Applications 6 (1986) 21–27Google Scholar
  12. 12.
    Neumann, T.R., Bülthoff, H.H.: Behavior-oriented vision for biomimetic flight control. In: Proceedings of the International Workshop on Biologically-Inspired Robotics: The Legacy of W. GreyWalter. (2002) 196–203Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Titus R. Neumann
    • 1
  1. 1.Max Planck Institute for Biological CyberneticsTübingenGermany

Personalised recommendations