Skip to main content

Insect-Inspired Estimation of Self-Motion

  • Conference paper
  • First Online:
Biologically Motivated Computer Vision (BMCV 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2525))

Included in the following conference series:

Abstract

The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion. In this study, we examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an optimal linear estimator incorporating prior knowledge about the environment. The optimal estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates turn out to be less reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibson, J. J. (1950). The perception of the visual world. Houghton Mifflin, Boston.

    Google Scholar 

  2. Hausen, K., Egelhaaf, M. (1989). Neural mechanisms of course control in insects. In: Stavenga, D. C., Hardie, R. C. (eds.), Facets of vision. Springer, Heidelberg, 391–424.

    Google Scholar 

  3. Krapp, H. G., Hengstenberg, B., & Hengstenberg, R. (1998). Dendritic structure and receptive field organization of optic low processing interneurons in the fly. J. of Neurophysiology, 79, 1902–1917.

    Google Scholar 

  4. Franz, M. O. & Krapp, H C. (2000). Wide-field, motion-sensitive neurons and matched filters for optic flow fields. Biol. Cybern., 83, 185–197.

    Article  Google Scholar 

  5. Koenderink, J. J., & van Doorn, A. J. (1987). Facts on optic flow. Biol. Cybern., 56, 247–254.

    Article  MATH  Google Scholar 

  6. Chahl, J. S, & Srinivasan, M. V. (1997). Reflective surfaces for panoramic imaging. Applied Optics, 36(31), 8275–8285.

    Article  Google Scholar 

  7. Srinivasan, M. V. (1994). An image-interpolation technique for the computation of optic flow and egomotion. Biol. Cybern., 71, 401–415.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Franz, M.O., Chahl, J.S. (2002). Insect-Inspired Estimation of Self-Motion. In: Bülthoff, H.H., Wallraven, C., Lee, SW., Poggio, T.A. (eds) Biologically Motivated Computer Vision. BMCV 2002. Lecture Notes in Computer Science, vol 2525. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36181-2_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-36181-2_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00174-4

  • Online ISBN: 978-3-540-36181-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics