A Binocular Stereo Algorithm for Log-Polar Foveated Systems

  • Alexandre Bernardino
  • José Santos-Victor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2525)


Foveation and stereopsis are important features on active vision systems. The former provides a wide field of view and high foveal resolution with low amounts of data, while the latter contributes to the acquisition of close range depth cues. The log-polar sampling has been proposed as an approximation to the foveated representation of the primate visual system. Although the huge amount of stereo algorithms proposed in the literature for conventional imaging geometries, very few are shown to work with foveated images sampled according to the log-polar transformation. In this paper we present a method to extract dense disparity maps in real-time from a pair of log-mapped images, with direct application to active vision systems.


Stereo Algorithm Stereo Disparity Foveated Image Active Vision System Intensity Base Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Amari and M. Arbib. Competition and Cooperation in Neural Nets, pages 119–165. Systems Neuroscience. J. Metzler (ed), Academic Press, 1977.Google Scholar
  2. 2.
    A. Basu and K. Wiebe. Enhancing videoconferencing using spatially varying sensing. IEEE Trans. on Systems, Man, and Cybernetics, 38(2):137–148, Mar. 1998.CrossRefGoogle Scholar
  3. 3.
    A. Bernardino and J. Santos-Victor. Binocular visual tracking: Integration of perception and control. IEEE Trans. on Robotics and Automation, 15(6):137–146, Dec. 1999.CrossRefGoogle Scholar
  4. 4.
    A. Bernardino, J. Santos-Victor, and G. Sandini. Foveated active tracking with redundant 2d motion parameters. Robotics and Autonomous Systems, 39(3–4):205–221, June 2002.CrossRefGoogle Scholar
  5. 5.
    M. Bolduc and M. Levine. A review of biologically motivated space-variant data reduction models for robotic vision. CVIU, 69(2):170–184, Feb. 1998.Google Scholar
  6. 6.
    T. Boyling and J. Siebert. A fast foveated stereo matcher. In Proc. Conf. on Imaging Science Systems and Technology, pages 417–423, Las Vegas, USA, 2000.Google Scholar
  7. 7.
    C. Capurro, F. Panerai, and G. Sandini. Dynamic vergence using log-polar images. IJCV, 24(1):79–94, Aug. 1997.CrossRefGoogle Scholar
  8. 8.
    T. Wiesel D. Hubel. Stereoscopic vision in macaque monkey. cells sensitive to binocular depth in area 18 of the macaque mokey cortex. Nature, 225:41–42, 1970.CrossRefGoogle Scholar
  9. 9.
    G. DeAngelis and W. Newsome. Organization of disparity-selective neurons in macaque area mt. The Journal of Neuroscience, 19(4):1398–1415, 1999.Google Scholar
  10. 10.
    S. Mallat E. Chang and C. Yap. Wavelet foveation. J. Applied and Computational Harmonic Analysis, 9(3):312–335, Oct. 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    B. Fischl, M. Cohen, and E. Schwartz. Rapid anisotropic diffusion using space-variant vision. IJCV, 28(3):199–212, July/Aug. 1998.CrossRefGoogle Scholar
  12. 12.
    G. Gambardella G. Sandini, C. Braccini and V. Tagliasco. A model of the early stages of the human visual system: Functional and topological transformation performed in the peripheral visual field. Biological Cybernetics, 44:47–58, 1982.CrossRefzbMATHGoogle Scholar
  13. 13.
    W. Geisler and J. Perry. A real-time foveated multi-resolution system for low-bandwidth video communication. In Human Vision and Electronic Imaging, SPIE Proceedings 3299, pages 294–305, Aug. 1998.Google Scholar
  14. 14.
    N. Griswald, J. Lee, and C. Weiman. Binocular fusion revisited utilizing a log-polar tessellation. CVIP, pages 421–457, 1992.Google Scholar
  15. 15.
    E. Grosso and M. Tistarelli. Log-polar stereo for anthropomorphic robots. In Proc. 6th ECCV, pages 299–313, Dublin, Ireland, June–July 2000.Google Scholar
  16. 16.
    B. Horn. Robot Vision. MIT Press, McGraw Hill, 1986.Google Scholar
  17. 17.
    W. Klarquist and A. Bovik. Fovea: A foveated vergent active stereo system for dynamic three-dimensional scene recovery. IEEE Trans. on Robotics and Automation, 14(5):755–770, Oct. 1998.CrossRefGoogle Scholar
  18. 18.
    D. Marr and T. Poggio. Cooperative computation of stereo disparity. Science, 194:283–287, 1976.CrossRefGoogle Scholar
  19. 19.
    M. Peters and A. Sowmya. A real-time variable sampling technique: Diem. In Proc. ICPR, pages 316–321, Brisbane, Australia, Aug. 1998.Google Scholar
  20. 20.
    S. Pollard, J. Mayhew, and J. Frisby. Pmf: A stereo correspondence algorithm using a disparity gradient limit. Perception, 14:449–470, 1985.CrossRefGoogle Scholar
  21. 21.
    K. Prazdny. Detection of binocular disparities. Biol. Cybern, 52:93–99, 1985.CrossRefzbMATHGoogle Scholar
  22. 22.
    G. Metta R. Manzotti, A. Gasteratos and G. Sandini. Disparity estimation on log-polar images and vergence control. CVIU, 83:97–117, 2001.zbMATHGoogle Scholar
  23. 23.
    G. Salgian and D. Ballard. Visual routines for vehicle control. In D. Kriegman, G. Hager, and S. Morse, editors, The Confluence of Vision and Control. Springer Verlag, 1998.Google Scholar
  24. 24.
    J. Santos-Victor and A. Bernardino. Vision-based navigation, environmental representations, and imaging geometries. In Proc. 10th Int. Symp. of Robotics Research, Victoria, Australia, Nov. 2001.Google Scholar
  25. 25.
    D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV, 47(1):7–42, April–June 2002.CrossRefzbMATHGoogle Scholar
  26. 26.
    E. Schwartz. Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biological Cybernetics, 25:181–194, 1977.CrossRefGoogle Scholar
  27. 27.
    J. Siebert and D. Wilson. Foveated vergence and stereo. In Proc. of the 3rd Int. Conf. on Visual Search (TICVS), Nottingham, UK, Aug. 1992.Google Scholar
  28. 28.
    M. Tistarelli and G. Sandini. On the advantages of polar and log-polar mapping for direct estimation of the time-to-impact from optical flow. IEEE Trans. on PAMI, 15(8):401–411, April 1993.CrossRefGoogle Scholar
  29. 29.
    H. Tunley and D. Young. First order optic flow from log-polar sampled images. In Proc. ECCV, pages A:132–137, 1994.Google Scholar
  30. 30.
    R. Wallace, P. Ong, B. Bederson, and E. Schwartz. Space variant image processing. IJCV, 13(1):71–90, Sep. 1995.CrossRefGoogle Scholar
  31. 31.
    C. Weiman and G. Chaikin. Logarithmic spiral grids for image processing and display. Comp Graphics and Image Proc, 11:197–226, 1979.Google Scholar
  32. 32.
    R. Zabih Y. Boykov, O. Veksler. Disparity component matching for visual correspondence. In Proc. CVPR, pages 470–475, 1997.Google Scholar
  33. 33.
    R. Zabih Y. Boykov, O. Veksler. Markov random fields with efficient approximations. In Proc. CVPR, pages 648–655, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Alexandre Bernardino
    • 1
  • José Santos-Victor
    • 1
  1. 1.ISR—Torre NorteInstituto Superior TécnicoLisboaPortugal

Personalised recommendations