Image Reconstruction from Gabor Magnitudes

  • Ingo J. Wundrich
  • Christoph von der Malsburg
  • Rolf P. Würtz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2525)


We present an analysis of the representation of images as the magnitudes of their transform with complex-valued Gabor wavelets. Such a representation is very useful for image understanding purposes and serves as a model for an early stage of human visual processing. We show that if the sampling of the wavelet transform is appropriate then the reconstruction from the magnitudes is unique up to the sign for almost all images. We also present an iterative reconstruction algorithm derived from the ideas of the proof, which yields very good reconstruction up to the sign and minor numerical errors in the very low frequencies.


Gabor wavelets reconstruction feature extraction phase retrieval Gabor magnitudes visual cortex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    John G. Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A, 2(7):1362–1373, 1985.CrossRefGoogle Scholar
  2. 2.
    Benoît Duc, Stefan Fischer, and Josef Bigün. Face authentication with gabor information on deformable graphs. IEEE Transactions on Image Processing, 8(4):504–516, 1999.CrossRefGoogle Scholar
  3. 3.
    I. Fogel and Dov Sagi. Gabor filters as texture discriminator. Biological Cybernetics, 61:103–113, 1989.CrossRefGoogle Scholar
  4. 4.
    A. Grossmann and J. Morlet. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM Journal of Mathematical Analysis, 15(4):723–736, July 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Monson H. Hayes. The Reconstruction of a Multidimensional Sequence from the Phase or Magnitude of Its Fourier Transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 30(2):140–154, April 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Monson H. Hayes and James H. McClellan. Reducible Polynomials in More Than One Variable. Proceedings of the IEEE, 70(2):197–198, February 1982.Google Scholar
  7. 7.
    J.P. Jones and L.A. Palmer. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6):1233–1258, 1987.Google Scholar
  8. 8.
    Gerald Kaiser. A Friendly Guide to Wavelets. Birkhäuser, 1994.Google Scholar
  9. 9.
    Martin Lades, Jan C. Vorbrüggen, Joachim Buhmann, Jörg Lange, Christoph von der Malsburg, Rolf P. Würtz, and Wolfgang Konen. Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers, 42(3):300–311, 1993.CrossRefGoogle Scholar
  10. 10.
    R. Murenzi. Wavelet Transforms Associated to the n-Dimensional Euclidean Group with Dilations: Signal in More Than One Dimension. In J. M. Combes, A. Grossmann, and P. Tchamitchian, editors, Wavelets—Time-Frequency Methods and Phase Space, pages 239–246. Springer, 1989.Google Scholar
  11. 11.
    Alan V. Oppenheim and Jae S. Lim. The Importance of Phase in Signals. Proceedings of the IEEE, 96(5):529–541, May 1981.Google Scholar
  12. 12.
    Daniel A. Pollen and Steven F. Ronner. Visual cortical neurons as localized spatial frequency filters. IEEE Transactions on Systems, Man, and Cybernetics, 13(5):907–916, 1983.CrossRefGoogle Scholar
  13. 13.
    Eero P. Simoncelli, William T. Freeman, Edward H. Adelson, and David J. Heeger. Shiftable Multiscale Transforms. IEEE Transactions on Information Theory, 38(2):587–607, March 1992.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jochen Triesch and Christoph von der Malsburg. Robust classification of hand postures against complex backgrounds. In Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, pages 170–175. IEEE Computer Society Press, 1996.Google Scholar
  15. 15.
    Sharon Urieli, Moshe Porat, and Nir Cohen. Optimal reconstruction of images from localized phase. IEEE Trans. Image Processing, 7(6):838–853, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Christoph von der Malsburg and Ladan Shams. Role of complex cells in object recognition. Nature Neuroscience, 2001. Submitted.Google Scholar
  17. 17.
    Laurenz Wiskott, Jean-Marc Fellous, Norbert Krüger, and Christoph von der Malsburg. Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):775–779, 1997.CrossRefGoogle Scholar
  18. 18.
    Xing Wu and Bir Bhanu. Gabor Wavelet Representation for 3-D Object Recognition. IEEE Transactions on Image Processing, 6(1):47–64, January 1997.CrossRefGoogle Scholar
  19. 19.
    Ingo J. Wundrich, Christoph von der Malsburg, and Rolf P. Würtz. Image representation by the magnitude of the discrete Gabor wavelet transform. IEEE Transactions on Image Processing, 1999. In revision.Google Scholar
  20. 20.
    Rolf P. Würtz. Object recognition robust under translations, deformations and changes in background. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):769–775, 1997.CrossRefGoogle Scholar
  21. 21.
    Rolf P. Würtz and Tino Lourens. Corner detection in color images through a multiscale combination of end-stopped cortical cells. Image and Vision Computing, 18(6–7):531–541, 2000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ingo J. Wundrich
    • 1
  • Christoph von der Malsburg
    • 1
    • 2
  • Rolf P. Würtz
    • 1
  1. 1.Institut für NeuroinformatikRuhr-Universität BochumBochumGermany
  2. 2.Laboratory for Computational and Biological VisionUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations