Skip to main content

On Learning Embedded Midbit Functions

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2533))

Included in the following conference series:

  • 477 Accesses

Abstract

A midbit function on l binary inputs x 1, … , x l outputs the middle bit in the binary representation of x 1 + ⋯ + x l. We consider the problem of PAC learning embeddedmidbit functions, where the set S ⊂ {x 1, . . . , x n} of relevant variables on which the midbit depends is unknown to the learner.

To motivate this problem, we first show that a polynomial time learning algorithm for the class of embedded midbit functions would immediately yield a fairly efficient (quasipolynomial time) PAC learning algorithm for the entire complexity class ACC. We then give two different subexponential learning algorithms, each of which learns embedded midbit functions under any probability distribution in 2√ n log n log n time. Finally, we give a polynomial time algorithm for learning embedded midbit functions under the uniform distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Allender and U. Hertrampf. Depth reduction for circuits of unbounded fan-in. Information and Computation, 112(2):217–238, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in NC 1. Journal of Computer and System Sciences, 38(1):150–164, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Barrington and D. Therien. Finite monoids and the fine structure of NC 1. J. ACM, 35(4):941–952, 1988.

    Article  MathSciNet  Google Scholar 

  4. R. Beigel and J. Tarui. On ACC. Computational Complexity, 4:350–366, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Blum, P. Chalasani, and J. Jackson. On learning embedded symmetric concepts. In Proceedings of the Sixth Annual Conference on Computational Learning Theory, pages 337–346, 1993.

    Google Scholar 

  6. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Fischer and H.U. Simon. On learning ring-sum expansions. SIAM Journal on Computing, 21(1):181–192, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, Reading, MA, 1994.

    MATH  Google Scholar 

  9. F. Green, J. Kobler, K. Regan, T. Schwentick, and J. Toran. The power of the middle bit of a #P function. Journal of Computer and System Sciences, 50(3):456–467, 1998.

    Article  MathSciNet  Google Scholar 

  10. D. Helmbold, R. Sloan, and M. Warmuth. Learning integer lattices. SIAM Journal on Computing, 21(2):240–266., 1992.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Klivans and R. Servedio. Learning DNF in time 2Õ(n1/3). In Proceedings of the Thirty-Third Annual Symposium on Theory of Computing, pages 258–265, 2001.

    Google Scholar 

  12. P. McKenzie and D. Therien. Automata theory meets circuit complexity. In Proceedings of the International Colloquium on Automata, Languages and Programming, pages 589–602, 1989.

    Google Scholar 

  13. M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry. MIT Press, Cambridge, MA, 1968.

    Google Scholar 

  14. C. Ramus. Solution générale d’un problème d’analyse combinatoire. J. Reine Agnew. Math., 11:353–355, 1834.

    MATH  Google Scholar 

  15. J. Riordan. An Introduction to Combinatorial Analysis. Wiley, New York, 1958.

    MATH  Google Scholar 

  16. J. Riordan. Combinatorial Identities. Wiley, New York, 1968.

    MATH  Google Scholar 

  17. L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

    Article  MATH  Google Scholar 

  18. A. Yao. Separating the polynomial time hierarchy by oracles. In Proceedings of the Twenty-Sixth Annual Symposium on Foundations of Computer Science, pages 1–10, 1985.

    Google Scholar 

  19. A. Yao. On ACC and threshold circuits. In Proceedings of the Thirty-First Annual Symposium on Foundations of Computer Science, pages 619–627, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Servedio, R.A. (2002). On Learning Embedded Midbit Functions. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds) Algorithmic Learning Theory. ALT 2002. Lecture Notes in Computer Science(), vol 2533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36169-3_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-36169-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00170-6

  • Online ISBN: 978-3-540-36169-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics