Skip to main content

Algorithms and Complexity for Tetrahedralization Detections

  • Conference paper
  • First Online:
  • 991 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2518))

Abstract

Let \( \mathcal{L} \) be a set of line segments in three dimensional Euclidean space. In this paper, we prove several characterizations of tetrahe-dralizations. We present an O(nm log n) algorithm to determine whether \( \mathcal{L} \) is the edge set of a tetrahedralization, where m is the number of segments and n is the number of endpoints in \( \mathcal{L} \). We show that it is NP-complete to decide whether \( \mathcal{L} \) contains the edge set of a tetrahedralization. We also show that it is NP-complete to decide whether \( \mathcal{L} \) is tetrahedralizable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Avis and H. ElGindy, Triangulating point sets in space, Discrete and Computational Geometry, 2(1987)99–111.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Bajaj and T.K. Dey, Convex decomposition of polyhedra and robustness, SIAM Journal on Computing, 21(1992)339–364.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Below, J.A. De Loera and J. Richter-Gebert, Finding minimal triangulations of convex 3-polytopes is NP-hard, In Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms, 9–11, 2000.

    Google Scholar 

  4. M. Bern and D. Eppstein, Mesh generation and optimal triangulation, In Computing in Euclidean Geometry, (D. Du and F. Hwang eds.), World Scientific Publishing Co. 1992.

    Google Scholar 

  5. B. Chazelle, Convex partitions of polyhedra: a lower bound and worst-case optimal algorithm, SIAM Journal on Computing, 13(1984)488–507.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Chazelle and L. Palios, Triangulating a nonconvex polytope, Discrete and computational geometry, 5(1990)505–526.

    Article  MATH  MathSciNet  Google Scholar 

  7. O. Devillers, G. Liotta, F.P. Preparata and R. Tamassia, Checking the Convexity of Polytopes and the Planarity of Subdivisions, Computational Geometry: Theory and Applications, 11(1998)187–208.

    MATH  MathSciNet  Google Scholar 

  8. H. Edelsbrunner, F. Preparata and D. West, Tetrahedralizing point sets in three dimensions, Journal of Symbolic Computation, 10(1990)335–347.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Goodman and J. Pach, Cell Decomposition of Polytopes by Bending, Israel Journal of Math, 64(1988)129–138.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Hershberger and J. Snoeyink, Convex polygons made from few lines and convex decompositions of polyhedra, In Lecture Notes in Computer Science 621, 376–387, 1992.

    MathSciNet  Google Scholar 

  11. J.E. Hopcroft and R.E. Tarjan, Efficient planarity testing, Journal of ACM, 21 (1974) 549–568.

    Article  MATH  MathSciNet  Google Scholar 

  12. E.L. Lloyd, On triangulations of a set of points in the plane, In Proc. 18th FOCS, 228–240, 1977.

    Google Scholar 

  13. K. Mehlhorn, S. Näher, M. Seel, R. Seidel, T. Schilz, S. Schirra and C. Uhrig, Checking Geometric Programs or Verification of Geometric Structures, Computational Geometry: Theory and Applications, 12(1999)85–103.

    MATH  MathSciNet  Google Scholar 

  14. J. Richter-Gebert, Finding small triangulations of polytope boundaries is hard, Discrete and Computational Geometry, 24(2000)503–517.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Rupert and R. Seidel, On the difficulty of triangulating three-dimensional non-convex polyhedra, Discrete and Computational Geometry, 7(1992)227–253.

    Article  MathSciNet  Google Scholar 

  16. E. Schönhardt, Uber die Zerlegung von Dreieckspolyedern in Tetraeder, Math. Annalen 98(1928)309–312.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, B., Wang, C.A., Chin, F. (2002). Algorithms and Complexity for Tetrahedralization Detections. In: Bose, P., Morin, P. (eds) Algorithms and Computation. ISAAC 2002. Lecture Notes in Computer Science, vol 2518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36136-7_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-36136-7_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00142-3

  • Online ISBN: 978-3-540-36136-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics