Molecular modeling of anthracycline—DNA interaction

  • L. E. Vîjan
  • E. Volanschi
  • Mihaela Hillebrand
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 122)


A series of anthracycline antibiotics, daunomycin, doxorubycin and epirubycin, was investigated by both molecular mechanics and quantum chemistry (semiempirical AM1) methods. The charge distributions used to evaluate the electrostatic contribution to the binding energy were calculated by the semi-empirical AM1 method. In order to evidence the sequence specificity of the drugs, some model single- and double-stranded DNA containing the bases adenine (A), thymine (T), cytosine (C) and guanine (G) in AAAA, TTTT, CCCC, GGGG, ATAT and CGCG sequences were used. In the drug—nucleic acid model complexes the quinone chromophore is intercalated between the base pairs of the DNA helix with the glycoside extended into the minor groove. The results outline the differences in the relative contributions of the electrostatic and van der Waals interactions to the total binding energy.


Molecular mechanics Semiempirical AM1 method DNA Anthracycline antibiotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rizzo V, Penco S, Menozzi M, Geroni C, Vigevani A, Arcamone F (1988) Anti-Cancer Drug Des 3:103–115Google Scholar
  2. 2.
    Remeta DP, Mudd CP, Berger RL, Breslauer KJ (1993) Biochemistry 32:5064–5673CrossRefGoogle Scholar
  3. 3.
    Volanschi E, Vîjan LE (2000) Rom J Biophys 10:1–15Google Scholar
  4. 4.
    Volanschi E, Vîjan LE (2001) Rev Roum Chim 46:163–173Google Scholar
  5. 5.
    Vîjan LE, Volanschi E, Hillebrand M (2001) Ann West Univ Timisoara 10:711–720Google Scholar
  6. 6.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen J.J, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Mongomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  7. 7.
    Neidle S, Taylor G (1977) Biochim Biophys Acta 479:450–459Google Scholar
  8. 8.
    Neidle S, Taylor G (1979) FEBS Lett 107:348–354CrossRefGoogle Scholar
  9. 9.
    Ward D, Reich E, Goldberg IH (1965) Science 149:1259–1263CrossRefGoogle Scholar
  10. 10.
    Pigram WJ, Fuller W, Hamilton LD (1972) Nature New Biol 235:17–19CrossRefGoogle Scholar
  11. 11.
    Gabbay EJ, Grier D, Fingerle RE, Reimer R, Levy R, Pearce SW, Wilson WD (1976) Biochemistry 15:4209–4215CrossRefGoogle Scholar
  12. 12.
    Wilson WD, Jones RL (1981) Adv Pharmacol Chemother 18:177–222CrossRefGoogle Scholar
  13. 13.
    Wang AHJ, Ughetto G, Quigley GJ, Rich A (1987) Biochemistry 26:1152–1163CrossRefGoogle Scholar
  14. 14.
    Chaires JB, Herrera JE, Waring M, (1990) Biochemistry 29:6145–6153CrossRefGoogle Scholar
  15. 15.
    Wang AHJ (1992) Opin Struct Biol 2:361–368CrossRefGoogle Scholar
  16. 16.
    Chaires JB (1998) Curr Opin Struct Biol 8:314–320CrossRefGoogle Scholar
  17. 17.
    Frederick CA, Williams LD, Ughetto G, van der Marel GA, van Boom JH, Rich A, Wang AHJ (1990) Biochemistry 29:2538–2549CrossRefGoogle Scholar
  18. 18.
    Nunn CM, Meervelt L van, Zhang SD, Moore MH, Kennard O (1991) J Mol Biol 222:167–177CrossRefGoogle Scholar
  19. 19.
    Madrid JM, Villfruella M, Serrano R, Mendicuti F (1999) J Phys Chem B 103:4847CrossRefGoogle Scholar
  20. 20.
    Cervero M, Mendicuti F (2000) J Phys Chem B 104:1572CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • L. E. Vîjan
    • 1
  • E. Volanschi
    • 1
  • Mihaela Hillebrand
    • 1
  1. 1.Department of Physical Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania

Personalised recommendations