Skip to main content

Molecular modeling of anthracycline—DNA interaction

  • Conference paper
  • First Online:
Aqueous Polymer — Cosolute Systems

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 122))

Abstract

A series of anthracycline antibiotics, daunomycin, doxorubycin and epirubycin, was investigated by both molecular mechanics and quantum chemistry (semiempirical AM1) methods. The charge distributions used to evaluate the electrostatic contribution to the binding energy were calculated by the semi-empirical AM1 method. In order to evidence the sequence specificity of the drugs, some model single- and double-stranded DNA containing the bases adenine (A), thymine (T), cytosine (C) and guanine (G) in AAAA, TTTT, CCCC, GGGG, ATAT and CGCG sequences were used. In the drug—nucleic acid model complexes the quinone chromophore is intercalated between the base pairs of the DNA helix with the glycoside extended into the minor groove. The results outline the differences in the relative contributions of the electrostatic and van der Waals interactions to the total binding energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rizzo V, Penco S, Menozzi M, Geroni C, Vigevani A, Arcamone F (1988) Anti-Cancer Drug Des 3:103–115

    CAS  Google Scholar 

  2. Remeta DP, Mudd CP, Berger RL, Breslauer KJ (1993) Biochemistry 32:5064–5673

    Article  CAS  Google Scholar 

  3. Volanschi E, Vîjan LE (2000) Rom J Biophys 10:1–15

    CAS  Google Scholar 

  4. Volanschi E, Vîjan LE (2001) Rev Roum Chim 46:163–173

    CAS  Google Scholar 

  5. Vîjan LE, Volanschi E, Hillebrand M (2001) Ann West Univ Timisoara 10:711–720

    Google Scholar 

  6. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen J.J, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Mongomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  7. Neidle S, Taylor G (1977) Biochim Biophys Acta 479:450–459

    CAS  Google Scholar 

  8. Neidle S, Taylor G (1979) FEBS Lett 107:348–354

    Article  CAS  Google Scholar 

  9. Ward D, Reich E, Goldberg IH (1965) Science 149:1259–1263

    Article  CAS  Google Scholar 

  10. Pigram WJ, Fuller W, Hamilton LD (1972) Nature New Biol 235:17–19

    Article  CAS  Google Scholar 

  11. Gabbay EJ, Grier D, Fingerle RE, Reimer R, Levy R, Pearce SW, Wilson WD (1976) Biochemistry 15:4209–4215

    Article  Google Scholar 

  12. Wilson WD, Jones RL (1981) Adv Pharmacol Chemother 18:177–222

    Article  CAS  Google Scholar 

  13. Wang AHJ, Ughetto G, Quigley GJ, Rich A (1987) Biochemistry 26:1152–1163

    Article  CAS  Google Scholar 

  14. Chaires JB, Herrera JE, Waring M, (1990) Biochemistry 29:6145–6153

    Article  CAS  Google Scholar 

  15. Wang AHJ (1992) Opin Struct Biol 2:361–368

    Article  CAS  Google Scholar 

  16. Chaires JB (1998) Curr Opin Struct Biol 8:314–320

    Article  CAS  Google Scholar 

  17. Frederick CA, Williams LD, Ughetto G, van der Marel GA, van Boom JH, Rich A, Wang AHJ (1990) Biochemistry 29:2538–2549

    Article  CAS  Google Scholar 

  18. Nunn CM, Meervelt L van, Zhang SD, Moore MH, Kennard O (1991) J Mol Biol 222:167–177

    Article  CAS  Google Scholar 

  19. Madrid JM, Villfruella M, Serrano R, Mendicuti F (1999) J Phys Chem B 103:4847

    Article  CAS  Google Scholar 

  20. Cervero M, Mendicuti F (2000) J Phys Chem B 104:1572

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dan F. Anghel

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this paper

Cite this paper

Vîjan, L.E., Volanschi, E., Hillebrand, M. (2003). Molecular modeling of anthracycline—DNA interaction. In: Anghel, D.F. (eds) Aqueous Polymer — Cosolute Systems. Progress in Colloid and Polymer Science, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36114-6_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-36114-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00099-0

  • Online ISBN: 978-3-540-36114-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics