Use of nonionic ethylene oxide surfactants as phase-transfer catalysts for poly(acrylic acid) adsorption to silica against an electrostatic repulsion

  • K. Derek Berglund
  • A. E. Timko
  • T. M. Przybycien
  • R. D. Tilton
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 122)


Using a combination of optical reflectometry, atomic force microscopy, and streaming current measurements, we show that complexation with nonionic ethoxylated surfactants enables poly(acrylic acid) (PAA) to adsorb to negatively charged silica surfaces despite its unfavorable electrostatic interaction with the surface. In the absence of surfactant, PAA does not adsorb to silica to any extent that is measurable by our methods. We used optical reflectometry to measure the adsorption isotherm for t-octyl-phenoxypolyethoxyethanol (Triton X-100) surfactants on silica. When PAA is added to the surfactant solution, optical reflectometry reveals a significant enhancement of the total adsorbed mass below the surfactant critical micelle concentration. Atomic force microscopy confirms the presence of PAA in the mixed adsorbed layer. At lower surfactant concentrations, the presence of PAA in the adsorbed layer is manifested in the form of long-range bridging adhesion between opposing surfaces. Removing surfactant by thoroughly rinsing the mixed layer leaves an irreversibly adsorbed, “deposited” PAA layer. The force between silica surfaces that display the deposited PAA layers is dominated by a double-exponential repulsion that is of considerably longer range than the electrostatic double-layer repulsion, indicating a steric interaction between extended PAA chains. Streaming current measurements show that the magnitude of the ζ potential is less after rinsing a mixed adsorbed layer than it was before adsorption. This further supports the occurrence of surfactant-mediated deposition of PAA layers on silica. Our results suggest intriguing applications for surfactants as phase-transfer catalysts for polymers in surface-modification processes, enabling the attainment of single-component adsorbed polymer states that are inaccessible from single-component polymer solutions.


Polymer/surfactant binding Adsorption hysteresis Multicomponent adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goddard ED, Ananthapadmanabhan KP (1993) Interactions of surfactants with polymers and proteins. CRC, Boca RatonGoogle Scholar
  2. 2.
    Schneider HM, Frantz P, Granick S (1996) Langmuir 12:994CrossRefGoogle Scholar
  3. 3.
    Pagac ES, Prieve DC, Solomentsev Y, Tilton RD (1997) Langmuir 13:2993CrossRefGoogle Scholar
  4. 4.
    Sukhishvili SA, Dhinojwala A, Granick (1999) Langmuir 15:8474CrossRefGoogle Scholar
  5. 5.
    Kelley TW, Schorr PA, Johnson KD, Tirrell M, Frisbie CD (1998) Macromolecules 31:4297CrossRefGoogle Scholar
  6. 6.
    Dedinaite A, Claesson PM, Bergström M (2000) Langmuir 16:5257CrossRefGoogle Scholar
  7. 7.
    Braem AD, Prieve DC, Tilton RD (2001) Langmuir 17:883CrossRefGoogle Scholar
  8. 8.
    Velegol SB, Tilton RD (2001) Langmuir 17:219CrossRefGoogle Scholar
  9. 9.
    Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry. Wiley, New YorkGoogle Scholar
  10. 10.
    Scales PJ, Grieser F, Healy TW, White LR, Chan DYC (1992) Langmuir 8:965CrossRefGoogle Scholar
  11. 11.
    Hartley PG, Larson I, Scales PJ (1997) Langmuir 13:2207CrossRefGoogle Scholar
  12. 12.
    Saito S, Taniguchi T (1971) Kolloid Z Z Polym 248:1039CrossRefGoogle Scholar
  13. 13.
    Saito S, Taniguchi T (1973) J Colloid Interface Sci 44:114CrossRefGoogle Scholar
  14. 14.
    Saito S (1989) J Am Oil Chem Soc 66:987CrossRefGoogle Scholar
  15. 15.
    Anghel DF, Winnik FM, Galatanu N (1999) Colloids Surf A 149:339CrossRefGoogle Scholar
  16. 16.
    Anghel DF, Saito S, Baran A, Iovescu A (1998) Langmuir 14:5342CrossRefGoogle Scholar
  17. 17.
    Saito S, Taniguchi T, Matsuyama H (1976) Colloid Polym Sci 254:882CrossRefGoogle Scholar
  18. 18.
    Saito S (1977) Tenside 14:113Google Scholar
  19. 19.
    Vasilescu M, Anghel DF, Almgren M, Hansson P, Saito S (1997) Langmuir 13:6951CrossRefGoogle Scholar
  20. 20.
    Grant LM, Tiberg F, Ducker WA (1998) J Phys Chem B 102:4288CrossRefGoogle Scholar
  21. 21.
    Luokkala BB, Garoff S, Tilton RD, Suter RM (2001) Langmuir 17:5917CrossRefGoogle Scholar
  22. 22.
    Tiberg F, Joesson B, Lindman B (1994) Langmuir 10:3714CrossRefGoogle Scholar
  23. 23.
    Tiberg F, Joensson B, Tang J-A, Lindman B (1994) Langmuir 10:2294CrossRefGoogle Scholar
  24. 24.
    Tiberg F (1996) J Chem Soc Faraday Trans 92:531CrossRefGoogle Scholar
  25. 25.
    Brinck J, Joensson B, Tiberg F (1998) Langmuir 14:1058CrossRefGoogle Scholar
  26. 26.
    Levitz P, Van Damme H, Keravis D (1984) J Phys Chem 88:2228CrossRefGoogle Scholar
  27. 27.
    Levitz P, Van Damme H (1986) J Phys Chem 90:1302CrossRefGoogle Scholar
  28. 28.
    Somasundaran P, Krishnakumar S (1997) Colloids Surf A 123:491CrossRefGoogle Scholar
  29. 29.
    Gu T, Zhu B (1990) Colloids Surf 44:81–87CrossRefGoogle Scholar
  30. 30.
    Lindheimer M, Keh E, Zaini S, Partyka S (1990) J Colloid Interface Sci 138:83CrossRefGoogle Scholar
  31. 31.
    Narkiewicz-Michalek J, Rudzinski W, Keh E, Partyka S (1992) Colloids Surf 62:273CrossRefGoogle Scholar
  32. 32.
    Kono N, Ikegami A (1966) Biopolymers 4:823CrossRefGoogle Scholar
  33. 33.
    Rebar VA, Santore MM (1996) J Colloid Interface Sci 178:29CrossRefGoogle Scholar
  34. 34.
    Berglund KD, Przybycien TM, Tilton RD (2002) (manuscript in preparation)Google Scholar
  35. 35.
    Turro NJ, Baretz BH, Kuo PL (1984) Macromolecules 17:1321CrossRefGoogle Scholar
  36. 36.
    Zana R, Lianos P, Lang JJ (1985) J Phys Chem 89:41CrossRefGoogle Scholar
  37. 37.
    Ananthapadmanabhan KP, Goddard ED, Turro NJ, Kuo PL (1985) Langmuir 1:352CrossRefGoogle Scholar
  38. 38.
    Kim J-H, Domach MM, Tilton RD (1999) J Phys Chem B 103:10582CrossRefGoogle Scholar
  39. 39.
    Dijt JC, Cohen Stuart MA, Hofman JE, Fleer GJ (1990) Colloids Surf 51:141CrossRefGoogle Scholar
  40. 40.
    Dijt JC, Cohen Stuart MA, Fleer GJ (1994) Adv Colloid Interface Sci 50:79CrossRefGoogle Scholar
  41. 41.
    Furst EM, Pagac ES, Tilton RD (1996) Ind Eng Chem Res 35:1566CrossRefGoogle Scholar
  42. 42.
    Tilton RD (1999) In: Farinato RS, Dubin PL (eds) Colloid-polymer interactions: from fundamentals to practice. Wiley, New York, p 331Google Scholar
  43. 43.
    Azzam RMA, Bashara NM (1977) Ellipsometry and polarized light. North Holland, AmsterdamGoogle Scholar
  44. 44.
    Braem AD(2001) PhD dissertation. Carnegie Mellon University, PittsburghGoogle Scholar
  45. 45.
    Braem AD, Prieve DC, Tilton RD (2002) (manuscript in preparation)Google Scholar
  46. 46.
    Ducker WA, Senden TJ, Pashley RM (1992) Langmuir 8:1831CrossRefGoogle Scholar
  47. 47.
    Dagastine R (2002) PhD dissertation. Carnegie Mellon University, PittsburghGoogle Scholar
  48. 48.
    Butt H-J (1991) J Biophys 60:1438CrossRefGoogle Scholar
  49. 49.
    Kim J-H, Domach MM, Tilton RD (1999) Colloids Surf A 150:55CrossRefGoogle Scholar
  50. 50.
    Kim J-H, Domach MM, Tilton RD (2000) Langmuir 16:10037CrossRefGoogle Scholar
  51. 51.
    Tiller GE, Mueller TJ, Dockter ME, Struve WG (1984) Anal Biochem 141:262CrossRefGoogle Scholar
  52. 52.
    Sigma Chemical Company (1999) Triton X-100 product informationGoogle Scholar
  53. 53.
    Robson RJ, Dennis EA (1977) J Phys Chem 81:1075CrossRefGoogle Scholar
  54. 54.
    Tanford C, Nozaki Y, Rohde MF (1977) J Phys Chem 81:1555CrossRefGoogle Scholar
  55. 55.
    Wright AK (1976) J Colloid Interface Sci 55:109CrossRefGoogle Scholar
  56. 56.
    Brown W, Rymden R, Van Stam J, Almgren M, Svensk G (1989) J Phys Chem 93:2512CrossRefGoogle Scholar
  57. 57.
    Paradies HH (1980) J Phys Chem 84:599CrossRefGoogle Scholar
  58. 58.
    Dupont L, Foissy A, Mercier R, Mottet B (1993) J Colloid Interface Sci 161:455CrossRefGoogle Scholar
  59. 59.
    Das KK, Somasundaran P (2001) Colloids Surf A 182:25CrossRefGoogle Scholar
  60. 60.
    Sastry NV, Sequaris JM, Schwuger MJ (1995) J Colloid Interface Sci 171:224CrossRefGoogle Scholar
  61. 61.
    Ishimuro Y, Ueberreiter K (1980) Colloid Polym Sci 258:928CrossRefGoogle Scholar
  62. 62.
    Maloney C, Huber K (1994) J Colloid Interface Sci 164:463CrossRefGoogle Scholar
  63. 63.
    Berg JM, Claesson PM, Neuman RD (1993) J Colloid Interface Sci 161:182CrossRefGoogle Scholar
  64. 64.
    Burns JL, Yan Y-d, Jameson GJ, Biggs S (2002) J Colloid Interface Sci 247:24CrossRefGoogle Scholar
  65. 65.
    Kuhn W, Gruhn F (1942) Kolloid Z 101:248CrossRefGoogle Scholar
  66. 66.
    Marko JF, Siggia ED (1995) Macromolecules 28:8759CrossRefGoogle Scholar
  67. 67.
    Butt H-J, Kappl M, Mueller H, Raiteri R, Meyer W, Ruehe J (1999) Langmuir 15:2559CrossRefGoogle Scholar
  68. 68.
    Ortiz C, Hadziioannou G (1999) Macromolecules 32:780CrossRefGoogle Scholar
  69. 69.
    Yamamoto S, Tsujii Y, Fukuda T (2000) Macromolecules 33:5995.CrossRefGoogle Scholar
  70. 70.
    Alexander S (1977) J Phys (Paris) 38:983Google Scholar
  71. 71.
    Luckham PF (1991) Adv Colloid Interface Sci 34:191CrossRefGoogle Scholar
  72. 72.
    Zhulina EB, Borisov OV, Birshtein TM (2000) Macromolecules 33:3488CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • K. Derek Berglund
    • 1
  • A. E. Timko
    • 1
  • T. M. Przybycien
    • 1
  • R. D. Tilton
    • 1
  1. 1.Department of Chemical Engineering, Department of Biomedical Engineering, and Center for Complex Fluids EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations