Advertisement

Dependence of the aggregation mode of two bidentate azo dyes in polycation/dye multilayers on the dye structure and the polycation conformation

  • Stella Dragan
  • Simona Schwarz
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 122)

Abstract

In this paper we report the growth particularities of some polycation/azo dye multilayers built up by the alternate adsorption of one polycation with quaternary ammonium salt groups in the backbone (95 mol % of N,N-dimethyl-2-hydroxypropyleneammonium chloride repeat units) (PCA5) and two bidentate azo dyes which differ from each other only by the position of sulfonic groups, Crocein scarlet MOO (CSMOO) and Ponceau SS (PSS). The multilayer build up was monitored by UV—vis spectroscopy. The polycation/azo dye binding mode in the multilayer depended on both the dye structure and the polycation conformation. H-aggregation was suggested for CSMOO, PCA5 being adsorbed from both saltless aqueous solution and 0.2 M low-molecular-weight salt (NaCl and Na2SO4) aqueous solution, while for PSS H-aggregation seemed to occur only when PCA5 was adsorbed from saltless aqueous solution. J-aggregation of PSS on the surface was suggested when PCA5 was adsorbed from 0.2 M Na2SO4 aqueous solution. The aggregation mode of the dye in the multilayer was correlated with the PCA5/dye interaction mode in the aqueous solution. Electrokinetic measurements were used to verify the dependence of the driving force for the PCA5/azo dye multilayer growth and the multilayer stability on the dye structure.

Keywords

Dye binding mode Electrokinetic measurements Metachromasy Polycation/azo dye multilayers UV—vis spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. (a)
    Decher G, Hong J-D (1991) Makromol Chem Macromol Symp 46:321Google Scholar
  2. 1. (b)
    Decher G, Hong J-D, Schmitt J (1992) Thin Solid Films 210/211:831CrossRefGoogle Scholar
  3. 1. (c)
    Lvov Y, Decher G, Sukhorukov G (1993) Macromolecules 26:5396CrossRefGoogle Scholar
  4. 1. (d)
    Decher G (1997) Science 277:1232CrossRefGoogle Scholar
  5. 2. (a)
    Ferreira M, Rubner MF (1995) Macromolecules 28:7104CrossRefGoogle Scholar
  6. 2. (b)
    Yoo D, Shiratori SS, Rubner MF (1998) Macromolecules 31:4308CrossRefGoogle Scholar
  7. 3.
    Caruso F, Niikura K, Furlong DN, Okahata Y (1997) Langmuir 13:3427CrossRefGoogle Scholar
  8. 4.
    Lowack K, Helm CA (1998) Macromolecules 31:823CrossRefGoogle Scholar
  9. 5.
    Wang L, Fu Y, Wang Z, Fan Y, Zhang X (1999) Langmuir 15:1360CrossRefGoogle Scholar
  10. 6.
    Dubas ST, Schlenoff JB (1999) Macromolecules 32:8153CrossRefGoogle Scholar
  11. 7.
    Hao E, Lian T (2000) Chem Mater 12:3392CrossRefGoogle Scholar
  12. 8.
    Schüler C, Caruso F (2000) Macromol Rapid Commun 21:750CrossRefGoogle Scholar
  13. 9.
    Bertrand P, Jonas A, Laschewsky A, Legras R (2000) Macromol Rapid Commun 21:319CrossRefGoogle Scholar
  14. 10. (a)
    Arys X, Laschewsky A, Jonas AM (2001) Macromolecules 34:3318CrossRefGoogle Scholar
  15. 10. (b)
    Glinel K, Laschewsky A, Jonas AM (2001) Macromolecules 34:5267CrossRefGoogle Scholar
  16. 11. (a)
    Schlenoff JB, Dubas ST (2001) Macromolecules 34:592CrossRefGoogle Scholar
  17. 11. (b)
    Dubas ST, Schlenoff JB (2001) Macromolecules 34:3736CrossRefGoogle Scholar
  18. 12.
    Rau H (1990) Azo Compounds In: Dürer H, Laurent HB (eds) Photochromism-molecules and systems. Elsevier, Amsterdam, pp 165–192Google Scholar
  19. 13.
    Knobloch H, Orendi H, Büchel M, Seki T, Ito S, Knoll W (1994) J Appl Phys 76:8212CrossRefGoogle Scholar
  20. 14.
    Menzel H, Rüther M, Stumpe J, Fischer T (1998) Supramol Sci 5:49CrossRefGoogle Scholar
  21. 15.
    Imai Y, Naka K, Chujo Y (1999) Macromolecules 32:1013CrossRefGoogle Scholar
  22. 16. (a)
    Toutianoush A, Tieke B (1998) Macromol Rapid Commun 19:591CrossRefGoogle Scholar
  23. 16. (b)
    Toutianoush A, Saremi F, Tieke B (1999) Mater Sci Eng C 8–9:343CrossRefGoogle Scholar
  24. 17.
    Hong J-D, Park E-S, Park A-L (1999) Langmuir 15:6515CrossRefGoogle Scholar
  25. 18. (a)
    Wang X, Balasubramanian S, Kumar J, Tripathy SK (1998) Chem Mater 10:1546CrossRefGoogle Scholar
  26. 18. (b)
    Balasubramanian S, Wang X, Wang HC, Yang K, Kumar J, Tripathy SK (1998) Chem Mater 10:1554CrossRefGoogle Scholar
  27. 19.
    Lenahan KM, Wang Y-X, Liu Y, Claus RO, Heflin JR, Marciu D, Figura C (1998) Adv Mater 10:853CrossRefGoogle Scholar
  28. 20.
    Dante S, Advincula R, Frank CW, Stroeve P (1999) Langmuir 15:193CrossRefGoogle Scholar
  29. 21. (a)
    Laschewsky A, Mayer B, Wischerhoff E, Arys X, Jonas A, Kauranen M, Persoons A (1997) Angew Chem Int Ed Engl 36:2788CrossRefGoogle Scholar
  30. 21. (b)
    Fischer P, Laschewsky A (2000) Macromolecules 33:1100CrossRefGoogle Scholar
  31. 22. (a)
    Tuo X, Chen Z, Wu L, Wang X, Liu D (2000) Polym Prepr Am Chem Soc Div Polym Chem) 41:11405Google Scholar
  32. 22. (b)
    He X, Chen Z, Wu L, Wang X, Liu D (2000) Polym Prepr Am Chem Soc Div Polym Chem 41:1358Google Scholar
  33. 23.
    Cochin D, Passmann M, Wilbert G, Zentel R, Wischerhoff E, Laschewsky A (1997) Macromolecules 30:4775CrossRefGoogle Scholar
  34. 24.
    Fischer P, Laschewsky A, Wischerhoff E, Arys X, Jonas A, Legras R (1999) Macromol Symp 137:1Google Scholar
  35. 25.
    Cooper TM, Campbell AL, Crane RL (1995) Langmuir 11:2713CrossRefGoogle Scholar
  36. 26.
    Ariga K, Lvov Y, Kunitake T (1997) J Am Chem Soc 119:2224CrossRefGoogle Scholar
  37. 27.
    Yoo D, Wu A, Lee J, Rubner MF (1997) Synth Met 85:1425CrossRefGoogle Scholar
  38. 28.
    Linford MR, Auch M, Möhwald H (1998) J Am Chem Soc 120:178CrossRefGoogle Scholar
  39. 29. (a)
    Laschewsky A, Mayer B, Wischerhoff E, Arys X, Jonas A (1996) Ber Bunsenges Phys Chem 100:1033Google Scholar
  40. 29. (b)
    Koetse M, Laschewsky A, Verbiest T (1999) Mater Sci Eng C 10:107CrossRefGoogle Scholar
  41. 30. (a)
    Advincula RC, Fells E, Park M (2001) Chem Mater 13:2870CrossRefGoogle Scholar
  42. 30. (b)
    Wang Y, Wallace E, Walton A, Bathia G, Park M-K, Advincula R (2000) Polym Prepr Am Chem Soc Div Polym Chem 41:1016Google Scholar
  43. 31.
    Dragan S, Schwarz S, Eichhorn K-J, Lunkwitz K (2001) Colloids Surf A 195:243CrossRefGoogle Scholar
  44. 32.
    Dragan S, Ghimici L (1991) Angew Makromol Chem 192:199CrossRefGoogle Scholar
  45. 33.
    Dragan S, Cristea M, Airinei A (1997) Macromol Rapid Commun 18:541CrossRefGoogle Scholar
  46. 34.
    Dragan S, Ghimici L, Cristea M, Airinei A (1999) Acta Polym 50:260CrossRefGoogle Scholar
  47. 35. (a)
    Schwarz S, Eichhorn K-J, Wischerhoff E, Laschewsky A (1999) Colloids Surf A 159:491CrossRefGoogle Scholar
  48. 35. (b)
    Fadel H, Schwarz S, Lunkwitz K, Jacobasch H-J (1998) Angew Makromol Chem 263:79CrossRefGoogle Scholar
  49. 36.
    Kugel R (1993) Adv Chem Sci 236:507CrossRefGoogle Scholar
  50. 37.
    Buss V, Eggers L (2000) In: Lindon JC, Tranter GE, Holmes JL (eds) Encyclopedia of spectroscopy and spectrometry. Academic, New York, pp 388–396Google Scholar
  51. 38.
    Ghimici L, Dragan S, Popescu F (1997) J Polym Sci Part B Polym Phys 35:2571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Stella Dragan
    • 1
  • Simona Schwarz
    • 1
    • 2
  1. 1.“Petru Poni” Institute of Macromolecular ChemistryAleea Grigore GhicaIasiRomania
  2. 2.Institute of Polymer ResearchDresdenGermany

Personalised recommendations