Skip to main content

Thermodynamic analysis of serum albumin denaturation by sodium dodecyl sulfate

  • Conference paper
  • First Online:
Aqueous Polymer — Cosolute Systems

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 122))

Abstract

Binding of variable amounts of sodium dodecyl sulfate (SDS) to bovine serum albumin (BSA) may be followed by analytical ultracentrifugation. The molar masses of the protein-surfactant complexes obtained from sedimentation equilibria allow binding isotherms to be established. UV absorption spectroscopy, fluorescence and circular dichroism are used for probing the conformational stability of proteins upon addition of surfactants, similar to the approaches used for denaturation by strong chaotropic reagents or heat. Measurements allow the determination of the equilibrium constant and the free energy, ΔG, for the transition from the folded (native) to the unfolded (denatured) state. ΔG at 25 °C in the absence of a surfactant or denaturant may be taken as a measure for the conformational stability of a protein. Though the results depend on the validity of certain assumptions regarding the folding/unfolding mechanism, as well as the evaluation method and the experimental conditions, the thermodynamics of surfactant-induced unfolding may be estimated and compared to the results of similar binding and unfolding experiments with other denaturants. The data presented in this work refer to BSA as a model. The results show diminished DG values for SDS-induced denaturation, compared to unfolding experiments with chaotropic denaturants or heat denaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes, 2nd edn. Wiley, New York

    Google Scholar 

  2. Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic, London

    Google Scholar 

  3. Jones MN (1992) Chem Soc Rev 21:127

    Article  CAS  Google Scholar 

  4. Jones MN, Chapman D (1995) Micelles, monolayers, and biomembranes. Wiley-Liss, New York

    Google Scholar 

  5. Jones MN (1988) In: Jones MN (ed) Biochemical thermodynamics, 2nd edn. Elsevier, Amsterdam, pp 182–240

    Google Scholar 

  6. Durchschlag H, Christl P, Jaenicke R (1991) Prog Colloid Polym Sci 86:41

    Article  CAS  Google Scholar 

  7. Durchschlag H, Binder S, Christl P, Jaenicke R (1994) Jorn Com Esp Deterg 25:407; Anexo 26

    CAS  Google Scholar 

  8. Durchschlag H, Weber R, Jaenicke R (1996) In: Proceedings of the 4th world surfactants congress, vol 1. CESIO, Barcelona, pp 519–534

    Google Scholar 

  9. Durchschlag H, Jaenicke R (1997) Chimica Oggi-Chem Today 15, No 9/10:15–24

    CAS  Google Scholar 

  10. Durchschlag H, Tiefenbach K-J, Jaenicke R (1997) Jorn Com Esp Deterg 27:185; Anexo 35

    CAS  Google Scholar 

  11. Tiefenbach K-J, Durchschlag H, Jaenicke R (1997) Prog Colloid Polym Sci 107:102

    Article  CAS  Google Scholar 

  12. Durchschlag H, Kuchenmüller B, Tiefenbach K-J, Jaenicke R (1998) Jorn Com Esp Deterg 28:353

    CAS  Google Scholar 

  13. Durchschlag H, Tiefenbach K-J, Weber R, Kuchenmüller B, Jaenicke R (2000) Colloid Polym Sci 278:312

    Article  CAS  Google Scholar 

  14. Durchschlag H, Tiefenbach K-J, Fischer A, Weber R, Jaenicke R (2000) In: Proceedings of the 5th world surfactants congress, vol 1. CESIO, Florence, pp 634–646

    Google Scholar 

  15. Durchschlag H, Tiefenbach K-J, Gebauer S, Jaenicke R (2001) J Mol Struct 563-564:449

    Article  CAS  Google Scholar 

  16. Durchschlag H, Fischer A, Tiefenbach K-J, Jaenicke R (2002) Jorn Com Esp Deterg 32:225

    CAS  Google Scholar 

  17. Peters T Jr (1985) Adv Protein Chem 37:161

    Article  CAS  Google Scholar 

  18. Pace CN (1986) Methods Enzymol 131:266

    Article  CAS  Google Scholar 

  19. Pace CN, Shirley BA, Thomson JA (1989) In: Creighton TE (ed) Protein structure: a practical approach. IRL, Oxford, pp 311–330

    Google Scholar 

  20. Shirley BA (1992) In: Ahern TJ, Manning MC (eds) Stability of protein pharmaceuticals, part A: chemical and physical pathways of protein degradation. Plenum, New York, pp 167–194

    Google Scholar 

  21. Shirley BA (1995) Methods Mol Biol 40:177

    CAS  Google Scholar 

  22. Tipping E, Jones MN, Skinner HA (1974) J Chem Soc Faraday Trans I 70:1306

    Article  CAS  Google Scholar 

  23. Pfeil W (1986) In: Hinz H-J (ed) Thermodynamic data for biochemistry and biotechnology. Springer, Berlin Heidelberg New York, pp 349–376

    Google Scholar 

  24. Pfeil W (1988) In: Jones MN (ed) Biochemical thermodynamics, 2nd edn. Elsevier, Amsterdam, pp 53–99

    Google Scholar 

  25. Pfeil W (1996) In: Holtzhauer M (ed) Methoden in der Proteinanalytik. Springer, Berlin Heidelberg New York, pp 276–310

    Google Scholar 

  26. Pfeil W (1998) Protein stability and folding: a collection of thermodynamic data. Springer, Berlin Heidelberg New York

    Google Scholar 

  27. Pfeil W (2001) Protein stability and folding, supplement 1: a collection of thermodynamic data. Springer, Berlin Heidelberg New York

    Google Scholar 

  28. Gromiha MM, An J, Kono H, Oobatake M, Uedaira H, Sarai A (1999) Nucleic Acids Res 27:286

    Article  CAS  Google Scholar 

  29. Gromiha MM, An J, Kono H, Oobatake M, Uedaira H, Prabakaran P, Sarai A (2000) Nucleic Acids Res 28:283

    Article  CAS  Google Scholar 

  30. http://www.rtc.riken.go.jp/jouhou/Protherm/protherm.html

  31. Greene RFJr, Pace CN (1974) J Biol Chem 249:5388

    CAS  Google Scholar 

  32. Santoro MM, Bolen DW (1988) Biochemistry 27:8063

    Article  CAS  Google Scholar 

  33. Bolen DW, Santoro MM (1988) Biochemistry 27:8069

    Article  CAS  Google Scholar 

  34. Gupta R, Ahmad F (1999) Biochemistry 38:2471

    Article  CAS  Google Scholar 

  35. Pace CN, Shaw KL (2000) Proteins Struct Funct Genet Suppl 4:1

    Article  Google Scholar 

  36. Yphantis DA (1964) Biochemistry 3:297

    Article  CAS  Google Scholar 

  37. Chervenka CH (1973) A manual of methods for the analytical ultracentrifuge. Spinco Division of Beckman Instruments, Palo Alto

    Google Scholar 

  38. Durchschlag H, Jaenicke R (1983) Int J Biol Macromol 5:143

    Article  CAS  Google Scholar 

  39. Schmid FX (1997) In: Creighton TE (ed) Protein structure: a practical approach, 2nd edn. IRL, Oxford, pp 261–297

    Google Scholar 

  40. Shirley BA (ed) (1995) Methods in molecular biology, vol 40: protein stability and folding: theory and practice. Humana, Totowa, N.J.

    Google Scholar 

  41. Demchenko AP (1986) Ultraviolet spectroscopy of proteins. Springer, Berlin Heidelberg New York

    Google Scholar 

  42. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer/Plenum, New York

    Google Scholar 

  43. Fasman GD (ed) (1996) Circular dichroism and the conformational analysis of biomolecules. Plenum, New York

    Google Scholar 

  44. Holtzhauer M (ed) (1996) Methoden in der Proteinanalytik. Springer, Berlin Heidelberg New York

    Google Scholar 

  45. Winter R, Noll F (1998) Methoden der Biophysikalischen Chemie. Teubner, Stuttgart

    Google Scholar 

  46. Tiefenbach K-J, Durchschlag H, Jaenicke R (1999) Prog Colloid Polym Sci 113:135

    Article  CAS  Google Scholar 

  47. Jirgensons B (1976) Biochim Biophys Acta 434:58

    CAS  Google Scholar 

  48. Durchschlag H, Zipper P (1994) Prog Colloid Polym Sci 94:20

    Article  CAS  Google Scholar 

  49. Durchschlag H, Zipper P (1995) Jorn Com Esp Deterg 26:275

    CAS  Google Scholar 

  50. Durchschlag H (2002) In Hinz H-J (ed): Landolt-Börnstein new series VII/ 2A. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dan F. Anghel

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this paper

Cite this paper

Tiefenbach, H.J., Durchschlag, H., Schneider, G., Jaenicke, R. (2003). Thermodynamic analysis of serum albumin denaturation by sodium dodecyl sulfate. In: Anghel, D.F. (eds) Aqueous Polymer — Cosolute Systems. Progress in Colloid and Polymer Science, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36114-6_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-36114-6_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00099-0

  • Online ISBN: 978-3-540-36114-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics