Advertisement

Thermodynamic analysis of serum albumin denaturation by sodium dodecyl sulfate

  • Hans -Jürgen. Tiefenbach
  • Helmut Durchschlag
  • Gregor Schneider
  • Rainer Jaenicke
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 122)

Abstract

Binding of variable amounts of sodium dodecyl sulfate (SDS) to bovine serum albumin (BSA) may be followed by analytical ultracentrifugation. The molar masses of the protein-surfactant complexes obtained from sedimentation equilibria allow binding isotherms to be established. UV absorption spectroscopy, fluorescence and circular dichroism are used for probing the conformational stability of proteins upon addition of surfactants, similar to the approaches used for denaturation by strong chaotropic reagents or heat. Measurements allow the determination of the equilibrium constant and the free energy, ΔG, for the transition from the folded (native) to the unfolded (denatured) state. ΔG at 25 °C in the absence of a surfactant or denaturant may be taken as a measure for the conformational stability of a protein. Though the results depend on the validity of certain assumptions regarding the folding/unfolding mechanism, as well as the evaluation method and the experimental conditions, the thermodynamics of surfactant-induced unfolding may be estimated and compared to the results of similar binding and unfolding experiments with other denaturants. The data presented in this work refer to BSA as a model. The results show diminished DG values for SDS-induced denaturation, compared to unfolding experiments with chaotropic denaturants or heat denaturation.

Keywords

Surfactant binding Protein denaturation and unfolding Analytical ultracentrifugation Spectroscopy Stabilization energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes, 2nd edn. Wiley, New YorkGoogle Scholar
  2. 2.
    Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic, LondonGoogle Scholar
  3. 3.
    Jones MN (1992) Chem Soc Rev 21:127CrossRefGoogle Scholar
  4. 4.
    Jones MN, Chapman D (1995) Micelles, monolayers, and biomembranes. Wiley-Liss, New YorkGoogle Scholar
  5. 5.
    Jones MN (1988) In: Jones MN (ed) Biochemical thermodynamics, 2nd edn. Elsevier, Amsterdam, pp 182–240Google Scholar
  6. 6.
    Durchschlag H, Christl P, Jaenicke R (1991) Prog Colloid Polym Sci 86:41CrossRefGoogle Scholar
  7. 7.
    Durchschlag H, Binder S, Christl P, Jaenicke R (1994) Jorn Com Esp Deterg 25:407; Anexo 26Google Scholar
  8. 8.
    Durchschlag H, Weber R, Jaenicke R (1996) In: Proceedings of the 4th world surfactants congress, vol 1. CESIO, Barcelona, pp 519–534Google Scholar
  9. 9.
    Durchschlag H, Jaenicke R (1997) Chimica Oggi-Chem Today 15, No 9/10:15–24Google Scholar
  10. 10.
    Durchschlag H, Tiefenbach K-J, Jaenicke R (1997) Jorn Com Esp Deterg 27:185; Anexo 35Google Scholar
  11. 11.
    Tiefenbach K-J, Durchschlag H, Jaenicke R (1997) Prog Colloid Polym Sci 107:102CrossRefGoogle Scholar
  12. 12.
    Durchschlag H, Kuchenmüller B, Tiefenbach K-J, Jaenicke R (1998) Jorn Com Esp Deterg 28:353Google Scholar
  13. 13.
    Durchschlag H, Tiefenbach K-J, Weber R, Kuchenmüller B, Jaenicke R (2000) Colloid Polym Sci 278:312CrossRefGoogle Scholar
  14. 14.
    Durchschlag H, Tiefenbach K-J, Fischer A, Weber R, Jaenicke R (2000) In: Proceedings of the 5th world surfactants congress, vol 1. CESIO, Florence, pp 634–646Google Scholar
  15. 15.
    Durchschlag H, Tiefenbach K-J, Gebauer S, Jaenicke R (2001) J Mol Struct 563-564:449CrossRefGoogle Scholar
  16. 16.
    Durchschlag H, Fischer A, Tiefenbach K-J, Jaenicke R (2002) Jorn Com Esp Deterg 32:225Google Scholar
  17. 17.
    Peters T Jr (1985) Adv Protein Chem 37:161CrossRefGoogle Scholar
  18. 18.
    Pace CN (1986) Methods Enzymol 131:266CrossRefGoogle Scholar
  19. 19.
    Pace CN, Shirley BA, Thomson JA (1989) In: Creighton TE (ed) Protein structure: a practical approach. IRL, Oxford, pp 311–330Google Scholar
  20. 20.
    Shirley BA (1992) In: Ahern TJ, Manning MC (eds) Stability of protein pharmaceuticals, part A: chemical and physical pathways of protein degradation. Plenum, New York, pp 167–194Google Scholar
  21. 21.
    Shirley BA (1995) Methods Mol Biol 40:177Google Scholar
  22. 22.
    Tipping E, Jones MN, Skinner HA (1974) J Chem Soc Faraday Trans I 70:1306CrossRefGoogle Scholar
  23. 23.
    Pfeil W (1986) In: Hinz H-J (ed) Thermodynamic data for biochemistry and biotechnology. Springer, Berlin Heidelberg New York, pp 349–376Google Scholar
  24. 24.
    Pfeil W (1988) In: Jones MN (ed) Biochemical thermodynamics, 2nd edn. Elsevier, Amsterdam, pp 53–99Google Scholar
  25. 25.
    Pfeil W (1996) In: Holtzhauer M (ed) Methoden in der Proteinanalytik. Springer, Berlin Heidelberg New York, pp 276–310Google Scholar
  26. 26.
    Pfeil W (1998) Protein stability and folding: a collection of thermodynamic data. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. 27.
    Pfeil W (2001) Protein stability and folding, supplement 1: a collection of thermodynamic data. Springer, Berlin Heidelberg New YorkGoogle Scholar
  28. 28.
    Gromiha MM, An J, Kono H, Oobatake M, Uedaira H, Sarai A (1999) Nucleic Acids Res 27:286CrossRefGoogle Scholar
  29. 29.(a)
    Gromiha MM, An J, Kono H, Oobatake M, Uedaira H, Prabakaran P, Sarai A (2000) Nucleic Acids Res 28:283CrossRefGoogle Scholar
  30. 29.(b)
  31. 30.
    Greene RFJr, Pace CN (1974) J Biol Chem 249:5388Google Scholar
  32. 31.
    Santoro MM, Bolen DW (1988) Biochemistry 27:8063CrossRefGoogle Scholar
  33. 32.
    Bolen DW, Santoro MM (1988) Biochemistry 27:8069CrossRefGoogle Scholar
  34. 33.
    Gupta R, Ahmad F (1999) Biochemistry 38:2471CrossRefGoogle Scholar
  35. 34.
    Pace CN, Shaw KL (2000) Proteins Struct Funct Genet Suppl 4:1CrossRefGoogle Scholar
  36. 35.
    Yphantis DA (1964) Biochemistry 3:297CrossRefGoogle Scholar
  37. 36.
    Chervenka CH (1973) A manual of methods for the analytical ultracentrifuge. Spinco Division of Beckman Instruments, Palo AltoGoogle Scholar
  38. 37.
    Durchschlag H, Jaenicke R (1983) Int J Biol Macromol 5:143CrossRefGoogle Scholar
  39. 38.
    Schmid FX (1997) In: Creighton TE (ed) Protein structure: a practical approach, 2nd edn. IRL, Oxford, pp 261–297Google Scholar
  40. 39.
    Shirley BA (ed) (1995) Methods in molecular biology, vol 40: protein stability and folding: theory and practice. Humana, Totowa, N.J.Google Scholar
  41. 40.
    Demchenko AP (1986) Ultraviolet spectroscopy of proteins. Springer, Berlin Heidelberg New YorkGoogle Scholar
  42. 41.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer/Plenum, New YorkGoogle Scholar
  43. 42.
    Fasman GD (ed) (1996) Circular dichroism and the conformational analysis of biomolecules. Plenum, New YorkGoogle Scholar
  44. 43.
    Holtzhauer M (ed) (1996) Methoden in der Proteinanalytik. Springer, Berlin Heidelberg New YorkGoogle Scholar
  45. 44.
    Winter R, Noll F (1998) Methoden der Biophysikalischen Chemie. Teubner, StuttgartGoogle Scholar
  46. 45.
    Tiefenbach K-J, Durchschlag H, Jaenicke R (1999) Prog Colloid Polym Sci 113:135CrossRefGoogle Scholar
  47. 46.
    Jirgensons B (1976) Biochim Biophys Acta 434:58Google Scholar
  48. 47.
    Durchschlag H, Zipper P (1994) Prog Colloid Polym Sci 94:20CrossRefGoogle Scholar
  49. 48.
    Durchschlag H, Zipper P (1995) Jorn Com Esp Deterg 26:275Google Scholar
  50. 49.
    Durchschlag H (2002) In Hinz H-J (ed): Landolt-Börnstein new series VII/ 2A. Springer, Berlin Heidelberg New York (in press)Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Hans -Jürgen. Tiefenbach
    • 1
  • Helmut Durchschlag
    • 1
  • Gregor Schneider
    • 1
  • Rainer Jaenicke
    • 1
  1. 1.Institute of Biophysics and Physical BiochemistryUniversity of RegensburgRegensburgGermany

Personalised recommendations