Advertisement

Influence of the polycation architecture on the oscillatoric forces of aqueous free-standing polyelectrolyte/surfactant films

  • Regine von Klitzing
  • Branko Kolarić
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 122)

Abstract

In the present study, freestanding films were formed from aqueous solutions of surfactant and polyelectrolyte and they were investigated by a thin film pressure balance. The surfactant was either a nonionic alkylpolyglucoside or cationic hexadecyltrimethylammonium bromide. Linear poly(diallyl dimethylammonium chloride) (PDAD-MAC) and poly(ethylene imine) (PEI) of different degrees of branching were investigated. The resulting disjoining pressure isotherms show steps in film thickness owing to oscillatoric structural forces. With respect to the polyelectrolyte architecture the step size, Δh, shows different scaling behavior with the polyelectrolyte concentration, c. While Δh in the thickness of the films containing linear polyelectrolytes scales as c -1/2, for the branched polyelectrolytes Δh scales as c -1/3. The effect of electrostatic interactions on the film stratification was studied by changing the ionic strength or the polymer charge density. For this purpose the ratio between cationic and neutral monomers was varied in the case of the strong PDADMAC or in the case of weak PEI the pH was changed. Both increasing the ionic strength and decreasing the polymer charge density leads to a reduction in the oscillation amplitude of the disjoining pressure. At high ionic strengths or for neutral polymers the steps in the film thickness vanish.

Keywords

Foam film Branched polyelectrolytes Linear polyelectrolytes Disjoining pressure Small-angle scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kwak JCT (ed) (1998) Polymer-surfactant-systems. Surfactant science series, vol 77. Dekker, New YorkGoogle Scholar
  2. 2.
    Vasilescu M, Anghel DF, Almgren M, Hansson P, Saito S (1997) Langmuir 13:6951CrossRefGoogle Scholar
  3. 3.
    Anghel DF, Saito S, Baran A, Iovescu A (1998) Langmuir 14:5342CrossRefGoogle Scholar
  4. 4.
    Nierlich M, Williams C, Boué F, Cotton JP, Daoud M, Farnoux B, Jannink G, Picot C, Moan M, Wolff C, Rinaudo M, de Gennes PG (1979) J Phys 40:701Google Scholar
  5. 5.
    Förster S, Schmidt M (1995) Adv Polym Sci 120:51Google Scholar
  6. 6.
    Nishida K, Kaji K, Kanaya T (1995) Macromolecules 28:2472CrossRefGoogle Scholar
  7. 7.
    Essafi W, Lafuma F, Williams CE (1999) Eur Phys J B 9:261CrossRefGoogle Scholar
  8. 8.
    Claesson PM, Bergström M, Dedinaite A, Kjellin M, Legrand J-F, Grillo I (2000) J Phys Chem B 104:11689CrossRefGoogle Scholar
  9. 9.
    Gennes P-G de, Pincus P, Velasco RM, Brochard F (1976) J Phys 37:37Google Scholar
  10. 10.
    Odijk T (1977) J Polym Sci Polym Phys Ed 15:688CrossRefGoogle Scholar
  11. 11.
    Skolnick J, Fixman M (1977) Macromolecules 10:944CrossRefGoogle Scholar
  12. 12.
    Dobrynin AV, Colby RV, Rubinstein M (1995) Macromolecules 28:1859CrossRefGoogle Scholar
  13. 13.
    Barrat JL, Joanny J-F (1996) Adv Chem Phys 94:1CrossRefGoogle Scholar
  14. 14.
    Bergeron V, Langevin D, Asnacios A (1996) Langmuir 12:1550CrossRefGoogle Scholar
  15. 15.
    Asnacios A, Espert A, Colin A, Langevin D (1997) Phys Rev Lett 78:4974CrossRefGoogle Scholar
  16. 16.
    Espert A, Klitzing R von, Poulin P, Colin A, Zana R, Langevin D (1998) Langmuir 14:4251CrossRefGoogle Scholar
  17. 17.
    Klitzing R von, Espert A, Asnacios A, Hellweg T, Colin A, Langevin D (1999) Colloid Surf A 149:131CrossRefGoogle Scholar
  18. 18.
    Kolarić B, Jaeger W, v Klitzing R (2000) J Phys Chem B 104:5096CrossRefGoogle Scholar
  19. 19.
    von Klitzing R (2000) Tenside Surfactants Deterg 37:338Google Scholar
  20. 20.
    von Klitzing R, Espert A, Colin A, Langevin D (2001) Colloid Surf A 176:109CrossRefGoogle Scholar
  21. 21.
    Theodoly O, Tan JS, Ober R, Williams CE, Bergeron V (2001) Langmuir 17:4910CrossRefGoogle Scholar
  22. 22.
    von Klitzing R, Kolari Æ B, Jaeger W, Brandt A (2002) Phys Chem Chem Phys 4:1907CrossRefGoogle Scholar
  23. 23.
    Dautzenberg H, Görnitz E, Jaeger W (1998) Macromol Chem Phys 199:1561CrossRefGoogle Scholar
  24. 24.
    Ruppelt D, Kötz J, Jaeger W, Friberg SE, Mackay RA (1997) Langmuir 13:3316CrossRefGoogle Scholar
  25. 25.
    Mysels KJ, Jones MN (1966) Discuss Faraday Soc 42:42CrossRefGoogle Scholar
  26. 26.
    Exerova D, Schedulko A (1971) Chim Phys 24:47Google Scholar
  27. 27.
    Exerova D, Kolarov T, Khristov KHR (1987) Colloid Surf A 22:171CrossRefGoogle Scholar
  28. 28.
    Schedulko A (1967) Adv Colloid Interface Sci 1:391CrossRefGoogle Scholar
  29. 29.
    Toca-Herrera J-L, v Klitzing R (2002) Macromolecules 35:2861CrossRefGoogle Scholar
  30. 30.
    Bock H, Schoen M (2000) J Phys Condens Mater 12:1545CrossRefGoogle Scholar
  31. 31.
    Chatellier X, Joanny JF (1996) J Phys II 6:1669CrossRefGoogle Scholar
  32. 32.
    Yethiraj A (1999) J Chem Phys 111:1797CrossRefGoogle Scholar
  33. 33.
    Israelachvili J (1992) Intermolecular and surface forces. Academic, New York, p 266Google Scholar
  34. 34.
    Ivanov IB, Dimitrov DS (1988) In: Ivanov IB(ed) Thin liquid films. Dekker, New York, p 79Google Scholar
  35. 35.
    Perez E, Proust JE, Ter-Minassian-Saraga L (1988) In: Ivanov IB (ed.) Thin liquid films. Dekker, New York, p 891Google Scholar
  36. 36.
    Kekicheff P, Richetti P (1992) Phys Rev Lett 68:1951CrossRefGoogle Scholar
  37. 37.
    Bergeron V, Radke CK (1992) Langmuir 8:3020CrossRefGoogle Scholar
  38. 38.
    Milling AJ (1996) J Phys Chem 100:8986CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Regine von Klitzing
    • 1
  • Branko Kolarić
    • 1
  1. 1.Stranski-Laboratorium für Physikalische und Theoretische ChemieTechnische Universität BerlinBerlinGermany

Personalised recommendations