Skip to main content

Surfactant structure effects on binding with oppositely charged polyelectrolytes observed by fluorescence of a pyrene probe and label

  • Conference paper
  • First Online:
Book cover Aqueous Polymer — Cosolute Systems

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 122))

Abstract

Poly(2-(acrylamido)-2-methylpropanesulfonic acid) (PAMPS) and three copolymers containing about 40 mol% of AMPS and N,N-dimethylacrylamide with a single label of naphthalene or pyrene and with both labels were synthesized. The binding of cationic surfactants cetyltrimethylammonium bromide (CTAB) and dodecyltrimethylammonium chloride (DTAC), and nonionic surfactant octaethylene glycol monododecyl ether (C12E8) on these anionic polyelectrolytes was observed in dilute aqueous solutions with the relative emission intensity of excimer to monomer, I E/I m, of cationic probe 1-pyrenemethylamine hydrochloride (PyMeA·HCl), the nonradiative energy transfer (NRET), I Py/I Np, between the labels, the emission intensity ratio, I 1/I 3, of the first peak to the third peak and the fluorescence anisotropy, r, of the pyrene label. The binding with cationic surfactants made the polyelectrolyte chains much curlier, leading to an increase in I E/I M and I Py/I Np. The intermolecular NRET occurred at higher CTAB concentrations owing to the hydrophobic aggregation between CTAB tails bound on different polyelectrolyte chains, which induced an increase in r of the pyrene label. No intermolecular aggregation was observed from the intermolecular NRET and r of the pyrene label for DTAC-bound polyelectrolytes owing to its weaker hydrophobicity of 12 carbon atoms in the tail, shorter than that of CTAB. As shown with constant values of the previously mentioned photophysical parameters of the labels with increasing C12E8 concentration, there was no obvious binding for C12E8 on the anionic polyelectrolytes. However, the presence of PAMPS promoted the micelle formation for C12E8 below its critical micelle concentration as detected by the excimer emission of PyMeA·HCl probe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wei Y-C, Hudson SM (1995) J Macromol Sci Rev Macromol Chem Phys C 35: 15

    Google Scholar 

  2. Ober CK, Wegner G (1997) Adv Mater 9: 7

    Google Scholar 

  3. Okuzaki H, Osada Y (1994) Macromolecules 27: 502

    Article  CAS  Google Scholar 

  4. Okuzaki H, Eguchi Y, Osada Y (1994) Chem Mater 6: 1651

    Article  CAS  Google Scholar 

  5. Winnik FM, Regismond STA (1998) In: Kwak J (ed) Polymer-surfactant systems. Dekker, New York, pp 269–315

    Google Scholar 

  6. Zana R (1998) In: Kwak J (ed) Polymer-surfactant systems. Dekker, New York, p 405–454

    Google Scholar 

  7. Morishima Y (1990) Prog Polym Sci 15: 949

    Article  CAS  Google Scholar 

  8. Winnik FM (1993) Chem Rev 93: 587

    Article  CAS  Google Scholar 

  9. Chu DY, Thomas JK (1986) J Am Chem Soc 108: 6270

    Article  CAS  Google Scholar 

  10. Choi LS, Kim O (1994) Langmuir 10: 57

    Article  CAS  Google Scholar 

  11. Kogej K, Skerjanc J (1999) Langmuir 15: 4251

    Article  CAS  Google Scholar 

  12. Almgren M, Hansson P, Mukhtar E, Stam JV (1992) Langmuir 8: 2405

    Article  CAS  Google Scholar 

  13. Hansson P, Almgren M (1994) Langmuir 10: 2115

    Article  CAS  Google Scholar 

  14. Saito S (1979) Colloid Polym Sci 257: 266

    Article  CAS  Google Scholar 

  15. Saito S (1993) J Colloid Interface Sci 158: 77

    Article  CAS  Google Scholar 

  16. Vasilescu M, Anghel DF, Almgren M, Hansson P, Saito S (1997) Langmuir 13: 6951

    Article  CAS  Google Scholar 

  17. Zhou S, Burger C, Yeh F, Chu B (1998) Macromolecules 31: 8157

    Article  CAS  Google Scholar 

  18. Zhou S, Chu B (2000) Adv Mater 12: 545

    Article  CAS  Google Scholar 

  19. Ren B, Tong Z, Gao F, Liu X, Zeng F (2001) Polymer 42: 7291

    Article  CAS  Google Scholar 

  20. Wang C, Sun Q, Tong Z, Liu X, Zeng F, Wu S (2001) Colloid Polym Sci 279: 664

    Article  CAS  Google Scholar 

  21. Wang C, Sun Q, Tong Z, Liu X, Zeng F, Gao F (2001) Chem J Chin Univ 22: 1265 (in Chinese)

    CAS  Google Scholar 

  22. Morishima Y, Tominaga Y, Kamachi M, Okada T, Hirata Y, Mataga N (1991) J Phys Chem 95: 6027

    Article  CAS  Google Scholar 

  23. Morishima Y, Tominaga Y, Nomura S, Kamachi M (1992) Macromolecules 25: 861

    Article  CAS  Google Scholar 

  24. Wang C, Tong Z, Zeng F, Ren B, Liu X (2002) Colloid Polym Sci (in press)

    Google Scholar 

  25. Hayakawa K, Satake I, Kwak JCT (1994) Colloid Polym Sci 272: 876

    Article  CAS  Google Scholar 

  26. Chandar P, Somasundaran P, Turro NJ (1988) Macromolecules 21: 950

    Article  CAS  Google Scholar 

  27. Morawets H (1988) Science 240: 172

    Article  Google Scholar 

  28. Webber SE (1990) Chem Rev 90: 1469

    Article  CAS  Google Scholar 

  29. Winnik FM (1990) Polymer 31: 2125

    Article  CAS  Google Scholar 

  30. Kramer MC, Steger JR, Hu Y, McCormick CL (1996) Macromolecules 29: 1992

    Article  CAS  Google Scholar 

  31. Yamamoto M, Mizusaki M, Yoda K, Morishima Y (1998) Macromolecules 31: 3588

    Article  CAS  Google Scholar 

  32. Kalyanasundaram K, Tomas JK (1977) J Am Chem Soc 99: 2039

    Article  CAS  Google Scholar 

  33. Morishima Y, Mizusaki M, Yoshida K, Dubin PL (1999) Colloids Surf A 147: 149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dan F. Anghel

Additional information

Dedicated to the 50th anniversary of Dr. Shuji Saito’s first paper on polymer-surfactant systems published in Colloid and Polymer Science

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this paper

Cite this paper

Wang, C., Tong, Z., Zeng, F., Ren, B., Liu, X., Wu, S. (2003). Surfactant structure effects on binding with oppositely charged polyelectrolytes observed by fluorescence of a pyrene probe and label. In: Anghel, D.F. (eds) Aqueous Polymer — Cosolute Systems. Progress in Colloid and Polymer Science, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36114-6_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-36114-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00099-0

  • Online ISBN: 978-3-540-36114-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics