Advertisement

Surfactant structure effects on binding with oppositely charged polyelectrolytes observed by fluorescence of a pyrene probe and label

  • Chaoyang Wang
  • Zhen Tong
  • Fang Zeng
  • Biye Ren
  • Xinxing Liu
  • Shuizhu Wu
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 122)

Abstract

Poly(2-(acrylamido)-2-methylpropanesulfonic acid) (PAMPS) and three copolymers containing about 40 mol% of AMPS and N,N-dimethylacrylamide with a single label of naphthalene or pyrene and with both labels were synthesized. The binding of cationic surfactants cetyltrimethylammonium bromide (CTAB) and dodecyltrimethylammonium chloride (DTAC), and nonionic surfactant octaethylene glycol monododecyl ether (C12E8) on these anionic polyelectrolytes was observed in dilute aqueous solutions with the relative emission intensity of excimer to monomer, I E/I m, of cationic probe 1-pyrenemethylamine hydrochloride (PyMeA·HCl), the nonradiative energy transfer (NRET), I Py/I Np, between the labels, the emission intensity ratio, I 1/I 3, of the first peak to the third peak and the fluorescence anisotropy, r, of the pyrene label. The binding with cationic surfactants made the polyelectrolyte chains much curlier, leading to an increase in I E/I M and I Py/I Np. The intermolecular NRET occurred at higher CTAB concentrations owing to the hydrophobic aggregation between CTAB tails bound on different polyelectrolyte chains, which induced an increase in r of the pyrene label. No intermolecular aggregation was observed from the intermolecular NRET and r of the pyrene label for DTAC-bound polyelectrolytes owing to its weaker hydrophobicity of 12 carbon atoms in the tail, shorter than that of CTAB. As shown with constant values of the previously mentioned photophysical parameters of the labels with increasing C12E8 concentration, there was no obvious binding for C12E8 on the anionic polyelectrolytes. However, the presence of PAMPS promoted the micelle formation for C12E8 below its critical micelle concentration as detected by the excimer emission of PyMeA·HCl probe.

Keywords

Surfactant Stoichiometric aggregation Fluorescence label Fluorescence probe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wei Y-C, Hudson SM (1995) J Macromol Sci Rev Macromol Chem Phys C 35: 15Google Scholar
  2. 2.
    Ober CK, Wegner G (1997) Adv Mater 9: 7Google Scholar
  3. 3.
    Okuzaki H, Osada Y (1994) Macromolecules 27: 502CrossRefGoogle Scholar
  4. 4.
    Okuzaki H, Eguchi Y, Osada Y (1994) Chem Mater 6: 1651CrossRefGoogle Scholar
  5. 5.
    Winnik FM, Regismond STA (1998) In: Kwak J (ed) Polymer-surfactant systems. Dekker, New York, pp 269–315Google Scholar
  6. 6.
    Zana R (1998) In: Kwak J (ed) Polymer-surfactant systems. Dekker, New York, p 405–454Google Scholar
  7. 7.
    Morishima Y (1990) Prog Polym Sci 15: 949CrossRefGoogle Scholar
  8. 8.
    Winnik FM (1993) Chem Rev 93: 587CrossRefGoogle Scholar
  9. 9.
    Chu DY, Thomas JK (1986) J Am Chem Soc 108: 6270CrossRefGoogle Scholar
  10. 10.
    Choi LS, Kim O (1994) Langmuir 10: 57CrossRefGoogle Scholar
  11. 11.
    Kogej K, Skerjanc J (1999) Langmuir 15: 4251CrossRefGoogle Scholar
  12. 12.
    Almgren M, Hansson P, Mukhtar E, Stam JV (1992) Langmuir 8: 2405CrossRefGoogle Scholar
  13. 13.
    Hansson P, Almgren M (1994) Langmuir 10: 2115CrossRefGoogle Scholar
  14. 14.
    Saito S (1979) Colloid Polym Sci 257: 266CrossRefGoogle Scholar
  15. 15.
    Saito S (1993) J Colloid Interface Sci 158: 77CrossRefGoogle Scholar
  16. 16.
    Vasilescu M, Anghel DF, Almgren M, Hansson P, Saito S (1997) Langmuir 13: 6951CrossRefGoogle Scholar
  17. 17.
    Zhou S, Burger C, Yeh F, Chu B (1998) Macromolecules 31: 8157CrossRefGoogle Scholar
  18. 18.
    Zhou S, Chu B (2000) Adv Mater 12: 545CrossRefGoogle Scholar
  19. 19.
    Ren B, Tong Z, Gao F, Liu X, Zeng F (2001) Polymer 42: 7291CrossRefGoogle Scholar
  20. 20.
    Wang C, Sun Q, Tong Z, Liu X, Zeng F, Wu S (2001) Colloid Polym Sci 279: 664CrossRefGoogle Scholar
  21. 21.
    Wang C, Sun Q, Tong Z, Liu X, Zeng F, Gao F (2001) Chem J Chin Univ 22: 1265 (in Chinese)Google Scholar
  22. 22.
    Morishima Y, Tominaga Y, Kamachi M, Okada T, Hirata Y, Mataga N (1991) J Phys Chem 95: 6027CrossRefGoogle Scholar
  23. 23.
    Morishima Y, Tominaga Y, Nomura S, Kamachi M (1992) Macromolecules 25: 861CrossRefGoogle Scholar
  24. 24.
    Wang C, Tong Z, Zeng F, Ren B, Liu X (2002) Colloid Polym Sci (in press)Google Scholar
  25. 25.
    Hayakawa K, Satake I, Kwak JCT (1994) Colloid Polym Sci 272: 876CrossRefGoogle Scholar
  26. 26.
    Chandar P, Somasundaran P, Turro NJ (1988) Macromolecules 21: 950CrossRefGoogle Scholar
  27. 27.
    Morawets H (1988) Science 240: 172CrossRefGoogle Scholar
  28. 28.
    Webber SE (1990) Chem Rev 90: 1469CrossRefGoogle Scholar
  29. 29.
    Winnik FM (1990) Polymer 31: 2125CrossRefGoogle Scholar
  30. 30.
    Kramer MC, Steger JR, Hu Y, McCormick CL (1996) Macromolecules 29: 1992CrossRefGoogle Scholar
  31. 31.
    Yamamoto M, Mizusaki M, Yoda K, Morishima Y (1998) Macromolecules 31: 3588CrossRefGoogle Scholar
  32. 32.
    Kalyanasundaram K, Tomas JK (1977) J Am Chem Soc 99: 2039CrossRefGoogle Scholar
  33. 33.
    Morishima Y, Mizusaki M, Yoshida K, Dubin PL (1999) Colloids Surf A 147: 149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Chaoyang Wang
    • 1
  • Zhen Tong
    • 1
  • Fang Zeng
    • 1
  • Biye Ren
    • 1
  • Xinxing Liu
    • 1
  • Shuizhu Wu
    • 1
  1. 1.Research Institute of Materials ScienceSouth China University of TechnologyGuangzhouChina

Personalised recommendations