Skip to main content

Geometry of Oblique Splitting Subspaces, Minimality and Hankel Operators

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 286))

Abstract

Stochastic realization theory provides a natural theoretical background for recent identification methods, called subspace methods, which have shown superior performance for multivariable state-space model-building. The basic steps of subspace algorithms are geometric operations on certain vector spaces generated by observed input-output time series which can be interpreted as “sample versions” of the abstract geometric operations of stochastic realization theory. The construction of the state space of a stochastic process is one such basic operation.

In the presence of exogenous inputs the state should be constructed starting from input-output data observed on a finite interval. This and other related questions still seems to be not completely understood, especially in presence of feedback from the output process to the input, a situation frequently encountered in applications. This is the basic motivation for undertaking a first-principle analysis of the stochastic realization problem with inputs, as presented in this paper. It turns out that stochastic realization with inputs is by no means a trivial extension of the well-established theory for stationary processes (time-series) and there are fundamentally new concepts involved, e.g. in the construction of the state space under possible presence of feedback from the output process to the input. All these new concepts lead to a richer theory which (although far from being complete) substantially generalizes and puts what was known for the time series setting in a more general perspective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7.10 References

  1. H. Akaike. Stochastic theory of minimal realization. IEEE Trans. Automat. Contr., 19(6):667–674, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Akaike. Markovian representation of stochastic processes by canonical variables. SIAM J. Control, 13:162–173, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  3. P.E. Caines and C.W. Chan. Estimation, identification and feedback. In R. Mehra and D. Lainiotis, editors, System Identification: Advances and Case Studies, pages 349–405. Academic, 1976.

    Google Scholar 

  4. A. Chiuso and G. Picci. On the ill-conditioning of subspace identification with inputs. Tech. Report TRITA/MATH-01-OS5, Department of Mathematics, Royal Institute of Technology, Stockholm, Sweden, 2001. submitted for pubblication.

    Google Scholar 

  5. Dym H. and McKean H. P. Gaussian Processes, Function Theory and the Inverse Spectral Problem, Academic Press, New York, 1976.

    MATH  Google Scholar 

  6. M.R. Gevers and B.D.O. Anderson. Representation of jointly stationary feedback free processes. Intern. Journal of Control, 33:777–809, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  7. M.R. Gevers and B.D.O. Anderson. On jointly stationary feedback-free stochastic processes. IEEE Trans. Automat. Contr., 27:431–436, 1982.

    Article  MATH  Google Scholar 

  8. C.W.J. Granger. Economic processes involving feedback. Information and Control, 6:28–48, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  9. E.J. Hannan and D.S. Poskitt. Unit canonical correlations between future and past. The Annals of Statistics, 16:784–790, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Hotelling. Relations between two sets of variables. Biometrica, 28:321–377, 1936.

    MATH  Google Scholar 

  11. M. Jansson, On consistency of subspace methods for system identification, Automatica 34 (1998), 1507–1519.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Katayama and G. Picci. Realization of stochastic systems with exogenous inputs and subspace system identification methods. Automatica, 35(10):1635–1652, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  13. W.E. Larimore. System identification, reduced-order filtering and modeling via canonical variate analysis. In Proc. American Control Conference, pages 445–451, 1983.

    Google Scholar 

  14. W.E. Larimore. Canonical variate analysis in identification, filtering, and adaptive control. In Proc. 29th IEEE Conf. Decision & Control, pages 596–604, Honolulu, 1990.

    Google Scholar 

  15. A. Lindquist and G. Picci: On the stochastic realization problem SIAM Journal on Control and Optimization 17, No. 3, pp. 365–389, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Lindquist, G. Picci and G. Ruckebush, On minimal splitting subspaces and Markovian representation Mathematical Systems Theory, 12, pp. 271–279, 1979.

    Article  MATH  Google Scholar 

  17. A. Lindquist and G. Picci. Linear Stochastic Systems. (book, to appear).

    Google Scholar 

  18. A. Lindquist and G. Picci. Realization theory for multivariate stationary gaussian processes. SIAM J. on control and Optimiz., 23(6):809–857, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Lindquist and G. Picci. A geometric approach to modelling and estimation of linear stochastic systems. Journal of Mathematical Systems, Estimation and Control, 1:241–333, 1991.

    MathSciNet  Google Scholar 

  20. A. Lindquist and G. Picci. Canonical correlation analysis approximate covariance extension and identification of stationary time series. Automatica, 32:709–733, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Van Overschee and B. De Moor. Subspace algorithms for the stochastic identification problem. Automatica, 29:649–660, 1993.

    Article  MATH  Google Scholar 

  22. P. Van Overschee and B. De Moor. N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems, Automatica 30 (1994), 75–93.

    Article  MATH  Google Scholar 

  23. P. Van Overschee and B. De Moor. Subspace identification for linear systems, Kluwer Academic Publications, 1996.

    Google Scholar 

  24. P.D. Lax and R.S. Phillips. Scattering Theory. Academic Press, NewYork, 1967.

    MATH  Google Scholar 

  25. G. Picci. Stochastic realization of gaussian processes. Proc. of the IEEE, 64:112–122, 1976.

    Article  MathSciNet  Google Scholar 

  26. G. Picci. Geometric methods in stochastic realization and system identification. In CWI Quarterly special Issue on System Theory, volume 9, pages 205–240, 1996.

    MATH  MathSciNet  Google Scholar 

  27. G. Picci. Oblique splitting susbspaces and stochastic realization with inputs. In D. Prätzel-Wolters U. Helmke and E. Zerz, editors, Operators, Systems and Linear Algebra, pages 157–174, Stuttgart, 1997. Teubner,.

    Google Scholar 

  28. G. Picci. Stochastic realization and system identification. In T. Katayama and I. Sugimoto, editors, Statistical Methods in Control and Signal Processing, pages 205–240, N.Y., 1997. M. Dekker.

    Google Scholar 

  29. G. Picci and S. Pinzoni Acausal Models and Balanced realizations of stationary processes Linear Algebra and its Applications ( special issue on Systems Theory), 205–206, pp. 957–1003, 1994.

    MathSciNet  Google Scholar 

  30. Y. A. Rozanov. Stationary Random Processes. Holden-Day, San Francisco, 1967.

    MATH  Google Scholar 

  31. M. Verhaegen, Identification of the deterministic part of mimo state space models given in innovations form from input-output data, Automatica 30 (1994), 61–74.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Verhaegen and P. Dewilde, Subspace model identification, part 1. the output-error state-space model identification class of algorithms; part 2. analysis of the elementary output-error state-space model identification algorithm, Int. J. Control 56 (1992), 1187–1210 & 1211–1241.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chiuso, A., Picci, G. (2003). Geometry of Oblique Splitting Subspaces, Minimality and Hankel Operators. In: Rantzer, A., Byrnes, C.I. (eds) Directions in Mathematical Systems Theory and Optimization. Lecture Notes in Control and Information Sciences, vol 286. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36106-5_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-36106-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00065-5

  • Online ISBN: 978-3-540-36106-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics