Skip to main content

Systems with Lebesgue Sampling

  • Conference paper
  • First Online:
Directions in Mathematical Systems Theory and Optimization

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 286))

Abstract

Sampling is normally done periodically in time. For linear time invariant systems this leads to closed loop systems that linear and periodic. Many properties can be investigated by considering the behavior of the systems at times that are synchronized with the sampling instants. This leads to drastic simplifications because the systems can be described by difference equations with constant coefficients. This is the standard approach used today when designing digital controllers. Using an analog from integration theory, periodic sampling can also be called Riemann sampling. Lebesgue sampling or event based sampling, is an alternative to Riemann sampling, it means that signals are sampled only when measurements pass certain limits. This type of sampling is natural when using many digital sensors such as encoders. Systems with Lebesgue sampling are much harder to analyze than systems with Riemann sampling, because the time varying nature of the closed loop system can not be avoided. In this paper we investigate some systems with Lebesgue sampling. Analysis of simple systems shows that Lebesgue sampling gives better performance than Riemann sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.6 References

  1. M Araki and K Yamamoto. Multivariable multirate sampled-data systems: state space description, transfer characteristics and nyquist criterion. IEEE Transactions on Automatic Control, AC-31:145–154, 1986.

    Article  MathSciNet  Google Scholar 

  2. Karl Johan Åström. Introduction to Stochastic Control Theory. Academic Press, New York, 1970.

    MATH  Google Scholar 

  3. Karl Johan Åström. Oscillations in systems with relay feedback. In Karl Johan Åström, G. C. Goodwin, and P. R. Kumar, editors, Adaptive Control, Filtering, and Signal Processing, volume 74 of IMA Volumes in Mathematics and its Applications, pages 1–25. Springer-Verlag, 1995.

    Google Scholar 

  4. Karl Johan Åström and Björn Wittenmark. Computer-Controlled Systems. Prentice Hall, third edition, 1997.

    Google Scholar 

  5. Alain Bensoussan and Jacques-Louis Lions. Impulse control and quasivariational inequalities. Gauthier-Villars, Paris, 1984.

    Google Scholar 

  6. S. DeWeerth, Lars Nielsen, C. Mead, and Karl Johan Åström. A neuronbased pulse servo for motion control. In IEEE Int. Conference on Robotics and Automation, Cincinnati, Ohio, 1990.

    Google Scholar 

  7. S. J. Dodds. Adaptive, high precision, satellite attitude control for microprocessor implementation. Automatica, 17(4):563–573, 1981.

    Article  Google Scholar 

  8. S. S. Draper, W. Wrigley, and J. Hovorka. Inertial Guidance. Pergamon Press, Oxford, 1960.

    Google Scholar 

  9. Wilhelm Feller. The parabolic differential equations and the associated semigroups of transformations. Ann. of Math., 55:468–519, 1952.

    Article  MathSciNet  Google Scholar 

  10. Wilhelm Feller. Diffusion processes in one dimension. Trans. Am. Math. Soc., 55:1–31, 1954.

    Article  MathSciNet  Google Scholar 

  11. Wilhelm Feller. The general diffusion operator and positivity preserving semigroups in one dimension. Ann. of Math., 60:417–436, 1954.

    Article  MathSciNet  Google Scholar 

  12. Paul M. Frank. A continuous-time model for a pfm-controller. IEEE Transactions on Automatic Control, AC-25(5):782–784, 1979.

    Article  Google Scholar 

  13. Russel K. Hobbie. Intermediate Physics for Medicine and Biology. Springer, 1997.

    Google Scholar 

  14. H Kopetz. Should responsive systems be event triggered or time triggered? IEICE Trans. on Information and Systems, E76-D(10):1525–1532, 1993.

    Google Scholar 

  15. C. A. Mead. Analog VLSI and Neural Systems. Addison-Wesley, Reading, Massachusetts, 1989.

    MATH  Google Scholar 

  16. E. Noges and P. M. Frank. Pulsfrequenzmodulierte Regelungssysteme. R. Oldenbourg, München, 1975.

    Google Scholar 

  17. S. R. Norsworthy, R. Schreier, and G. Temes. Delta-Sigma Data Converters. IEEE Press, New York, 1996.

    Google Scholar 

  18. T. Pavlidis. Optimal control of pulse frequency modulated systems. IEEE Transactions on Automatic Control, AC-11(4):35–43, 1966.

    Google Scholar 

  19. T Pavlidis and E. J Jury. Analysis of a new class of pulse frequency modulated control systems. IEEE Transactions on Automatic Control, AC-10:35–43, 1965.

    Article  Google Scholar 

  20. Bengt Pettersson. Production control of a complex integrated pulp and paper mill. Tappi, 52(11):2155–2159, 1969.

    Google Scholar 

  21. E Polak. Stability and graphical analysis of first order of pulse-width-modulated sampled-data regulator systems. IRE Trans. Automatic Control, AC-6(3):276–282, 1968.

    Google Scholar 

  22. Herbertt Sira-Ramirez. A geometric approach to pulse-width modulated control in nonlinear dynamical systems. IEEE Transactions on Automatic Control, AC-34(2):184–187, 1989.

    Article  MathSciNet  Google Scholar 

  23. Herbertt Sira-Ramirez and Pablo Lischinsky-Arenas. Dynamic discontinuous feedback control of nonlinear systems. IEEE Transactions on Automatic Control, AC-35(12):1373–1378, 1990.

    Article  MathSciNet  Google Scholar 

  24. Ronald A. Skoog. On the stability of pulse-width-modulated feedback systems. IEEE Transactions on Automatic Control, AC-13(5):532–538, 1968.

    Article  Google Scholar 

  25. Ronald A. Skoog and Gilmer L. Blankenship. Generalized pulse-modulated feedback systems: Norms, gains, lipschitz constants and stability. IEEE Transactions on Automatic Control, AC-15(3):300–315, 1970.

    Article  MathSciNet  Google Scholar 

  26. Ya. Z. Tsypkin. Theory of intermittent control. Avtomatika i Telemekhanika, 1949, 1950. Vol. 10 (1949) Part I, pp. 189–224; Part II, pp. 342–361; Vol. 11 (1950) Part III, pp. 300–331.

    Google Scholar 

  27. Ya. Z. Tsypkin. Relay Control Systems. Cambridge University Press, Cambridge, UK, 1984.

    MATH  Google Scholar 

  28. V. Utkin. Sliding modes and their applications in variable structure systems. MIR, Moscow, 1981.

    Google Scholar 

  29. V. I. Utkin. Discontinuous control systems: State of the art in theory and applications. In Preprints 10th IFAC World Congress, Munich, Germany, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Åström, K.J., Bernhardsson, B. (2003). Systems with Lebesgue Sampling. In: Rantzer, A., Byrnes, C.I. (eds) Directions in Mathematical Systems Theory and Optimization. Lecture Notes in Control and Information Sciences, vol 286. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36106-5_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-36106-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00065-5

  • Online ISBN: 978-3-540-36106-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics