Skip to main content

Microcalcification Detection Using a Kernel Bayes Classifier

  • Conference paper
  • First Online:
  • 495 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2526))

Abstract

Mammography associated with clinical breast examination is the only effective method for mass breast screening. Microcalcifications are one of the primary signs for early detection of breast cancer. In this paper we propose a new kernel method for classification of dificult to diagnose regions in mammographic images. It consists of a novel class of Markov Random Fields, using techniques developed within the context of statistical mechanics. This method is used for the classification of positive Region of Interest (ROI’s) containing clustered microcalcifications and negative ROI’s containing normal tissue. We benchmarked the new proposed method with a nearest neighbor classifier and with an artificial neural network, widely used in literature for computer-aided diagnosis. We obtained the best performance using the novel approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Amit, “Modeling Brain Function”, Cambridge University Press, 1989.

    Google Scholar 

  2. C. M. Bishop, Neural Networks for Pattern Recognition, Claredon Press-Oxford, 1995.

    Google Scholar 

  3. B. Caputo, G. E. Gigante, “Digital Mammography: a Weak Continuity Texture Representation for Detection of Microcalcifications”, Proc. of SPIE Medical Imaging 2001, February 17-22, VOL 4322, PP1705–1716, San Diego, (CA), USA, 2001.

    Google Scholar 

  4. B. Caputo, H. Niemann, “From Markov Random Fields to Associative Memories and Back: Spin Glass Markov Random Fields”, SCTV2001.

    Google Scholar 

  5. J. J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons”, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 3088–3092, 1984.

    Google Scholar 

  6. A. K. Jain, “Fundamental of digital image processing”, Prentice Hall, Englewood Cliffs, 1989.

    Google Scholar 

  7. M. Lanyi, “Diagnosis and Differential Diagnosis of Breast Calcifications”, New York: Springer-Verlag, 1986.

    Google Scholar 

  8. R. P. Lippmann, “An introduction to computing with neural nets”, IEEE ASSP Magazine, pp. 4–22, April 1987.

    Google Scholar 

  9. M. Mezard, G. Parisi, M. Virasoro, “Spin Glass Theory and Beyond”, World Scientific, Singapore, 1987.

    Google Scholar 

  10. S. Morio and S. Kawahara et al., “Expert system for early detection of cancer of the breast”, Comp. Biol. Med., vol. 19, no. 5, pp. 295–305, 1989.

    Article  Google Scholar 

  11. Nishikawa RM, Wolverton DE, Schmidt RA, Papaioannou J, “Radiologists’ ability to discriminate computer-detected true and false positives, from an automated scheme for the detection of clustered microcalcifications on digital mammograms”, Proc SPIE 3036: 198–204, 1997.

    Google Scholar 

  12. D. E. Rumelhart and C.R. Rosemberg, Parallel Distributed Processing, the MIT Press, Cambridge MA, 1986.

    Google Scholar 

  13. B. Schiele, J. L. Crowley, “Recognition without correspondence using multidimensional receptive field histograms”, IJCV, 36 (1), pp. 31–52, 2000.

    Article  Google Scholar 

  14. B. Schölkopf, A. J. Smola, Learning with kernels, 2001, the MIT Press.

    Google Scholar 

  15. L. Shen, R. M. Rangayyan and J. E. L. Desautels, “Application of shape analysis to mammographic calcifications”, IEEE Trans. Med Imag., vol. 13, no. 2, pp. 263–274, 1994.

    Article  Google Scholar 

  16. E. A. Sickles and D. B. Kopans, “Mammographic screening for women aged 40 to 49 years: the primary practitioner’s dilemma”, Anna. Intern. Med., vol. 122, no. 7, pp. 534–538, 1995.

    Google Scholar 

  17. M. Swain, D. Ballard, “color Indexing”, IJCV, 7, pp 11–32, 1991.

    Article  Google Scholar 

  18. V. Vapnik, Statistical learning theory, J. Wiley, New York, 1998.

    Google Scholar 

  19. Zhang W, Doi K, Giger ML, Nishikawa RM, Schmidt RA, “An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms”. Med Phys, 23: 595–601, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caputo, B., La Torre, E., Gigante, G.E. (2002). Microcalcification Detection Using a Kernel Bayes Classifier. In: Colosimo, A., Sirabella, P., Giuliani, A. (eds) Medical Data Analysis. ISMDA 2002. Lecture Notes in Computer Science, vol 2526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36104-9_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-36104-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00044-0

  • Online ISBN: 978-3-540-36104-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics