Skip to main content

An Artificial Neural Network for 3D Localization of Brainstem Functional Lesions

  • Conference paper
  • First Online:
Medical Data Analysis (ISMDA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2526))

Included in the following conference series:

  • 488 Accesses

Abstract

The human brainstem is a highly complex structure where even small lesions can give rise to a variety of symptoms and signs. Localizing the area of dysfunction within the brainstem is often a difficult task. To make localization easier, we have developed a neural net system, which uses 72 clinical and neurophysiological data inputs and displays it (using 5268 voxels) on a three-dimensional model of the human brainstem. The net was trained by means of a back-propagation algorithm, over a pool of 580 example-cases. Assessed on 200 test-cases, the net correctly localized 83.6% of the target voxels; furthermore the net correctly localized the lesion in 31/37 patients. Because our computer-assisted method provides a reliable and quantitative localization of brainstem areas of dysfunction and can be used as a 3D interactive functional atlas, we expect that it will prove useful as a diagnostic tool for assessing focal brainstem lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ACCORNERO, N., and CAPOZZA, M. (1995): ‘OPTONET: neural network for visual field diagnosis’, Med. Biol. Eng. Comput., 33, pp. 223–226

    Article  Google Scholar 

  • ANSHELEVICH, V.V., AMIRIKIAN, B.R., LUKASHIN, A.V., and FRANK-KAMENETSKII, M.D. (1989): ‘On the ability of neural networks to perform generalization by induction’, Biol. Cybern., 61, pp. 125–128

    Article  MathSciNet  Google Scholar 

  • ARENDT-NIELSEN, L. (1994): ‘Characteristics, detection and modulation of laser-evoked vertex potentials’, Acta Anaesthesiol. Scand., 38, pp. 1–36

    Google Scholar 

  • ARMONI, A. (1998): ‘Use of neural networks in medical diagnosis’, MD Comput., 15 (2), pp. 100–104

    Google Scholar 

  • BAUM, E. B. and D. HAUSSLER (1989): ‘What size net gives valid generalization?’ Neural Comput., 1 (1), pp. 151–160

    Article  Google Scholar 

  • BISHOP, M.C. (1995): ‘Neural Networks for Pattern Recognition’ (Oxford University Press, New York)

    Google Scholar 

  • BROMM, B. and TREEDE, R.D. (1991): ‘Laser evoked potentials in the assessment of cutaneous pain sensitivity in normal subjects and patients’ Rev. Neurol., 147, pp. 625–643

    Google Scholar 

  • BYRNE, J.V., KENDALL, B.E., KINGSLEY, D.P., MOSELEY, I.F. (1989): ‘Lesions of the brain stem: assessment by magnetic resonance imaging’, Neuroradiology, 31 (2), pp. 129–133

    Article  Google Scholar 

  • CAPLAN, L., GUTMANN, L., BESSER, R., HOPF, H.C. (1993): ‘Brain-Stem Localization and Function’ (Springer, Heidelberg/New York)

    Google Scholar 

  • CAPOZZA M, IANNETTI GD, MOSTARDA M, CRUCCU G; ACCORNERO N (2000). 3D mapping of brainstemfunctional lesions. Med Biol Eng Comput 38 pp. 639–644.

    Article  Google Scholar 

  • CAPRA, R., MATTIOLI, F., VIGNOLO, L.A., ANTONELLI, A.R., BONFIOLI, F., CAPPIELLO, J., NICOLAI, P., PERETTI, G. and ORLANDINI, A. (1989): ‘Lesion detection in MS patients with and without clinical brainstem disorders: magnetic resonance imaging and brainstem auditory evoked potentials compared’, Eur. Neurol. 29 (6), pp. 317–322

    Article  Google Scholar 

  • CRUCCU, G., and DEUSCHL G. (2000): ‘The clinical use of brainstem reflexes and hand-muscle reflexes’, Clin. Neurophysiol., 111, pp. 371–387

    Article  Google Scholar 

  • CRUCCU, G., and ONGERBOER DE VISSER, B.W. (1999): ‘The jaw reflexes’, Electroencephalogr. Clin. Neurophysiol., suppl. 52: pp. 243–247

    Google Scholar 

  • DEUSCHL, G., and EISEN, A. (Eds., 1999): ‘Recommendations for the Practice of Clinical Neurophysiology: Guidelines of the International Federation of Clinical Neurophysiology (2nd ed)’ (Elsevier, Amsterdam)

    Google Scholar 

  • FELDMAN, J., and BALLARD, D. (1982): ‘Connectionist models and their properties’, Cognitive Sci., 6, pp. 205–254

    Article  Google Scholar 

  • GROSSBERG, S. (1988): ‘Nonlinear neural networks: principles, mechanisms, and architectures’, Neural Networks, 1, pp. 17–61

    Article  Google Scholar 

  • HARNAD, S., DOTY, R.W., GOLDSTEIN, L., JAYNES, J., KRAUTHAMER, G. (1977): ‘Lateralization in the nervous system’ (Academic Press, New York)

    Google Scholar 

  • HOPF, H.C. (1994): ‘Topodiagnostic value of brain stem reflexes’, Muscle Nerve, 17, pp. 475–484

    Google Scholar 

  • KIMURA, J., DAUBE, J., BURKE, D., HALLETT, M., CRUCCU, G., ONGERBOER DE VISSER, B.W., YANAGISAWA, N., SHIMAMURA, M., ROTHWELL, J. (1994): ‘Human reflexes and late responses. Report of an IFCN committee’, Electroencephalogr. Clin. Neurophysiol. 90, pp. 393–403

    Article  Google Scholar 

  • KOHONEN, T. (1990) The self-organizing map. P. IEEE, 78, pp. 1464–1480

    Article  Google Scholar 

  • KRETSCHMANN, H.J., and WEINRICH, W. (1998): ‘Neurofunctional Systems-3D Reconstructions with Correlated Neuroimaging’ (George Thieme Verlag, Stuttgart)

    Google Scholar 

  • MASIYAMA, S., NIIZUMA, H., SUZUKI, J. (1985): ‘Pontine haemorrhage: a clinical analysis of 26 cases’, J. Neurol. Neurosurg. Psychiatry, 48, pp. 658–662

    Article  Google Scholar 

  • MILLER, A.S., BLOTT, B.H. and HAMES, T.K. (1992): ‘Review of neural network applications in medical imaging and signal processing’, Med. Biol. Eng. Comput., 30, pp. 449–464

    Article  Google Scholar 

  • ONGERBOER DE VISSER, B.W., CRUCCU, G., MANFREDI, M., KOELMAN, J.H. (1990): ‘Effects of brainstem lesions on the masseter inhibitory reflex. Functional mechanisms of reflex pathway’, Brain, 113 (3), pp. 781–792

    Article  Google Scholar 

  • ONGERBOER DE VISSER, B.W., and CRUCCU, G. (1993): ‘Neurophysiologic examination of the trigeminal, facial, hypoglossal, and spinal accessory nerves in cranial neuropathies and brain stem disorders’ in BROWN, W.F., and BOLTON, C.F. (Eds.): ‘Clinical Electromyography (2nd ed)’ (Butterworth-Heinemann, Boston) pp. 61–92

    Google Scholar 

  • ORMEROD, I.E., ROBERTS, R.C., DU BOULAY, E.P., MCDONALD, W.I., CALLANAN, M.M., HALLIDAY, A.M., JOHNSON, G., KENDALL, B.E., LOGSDAIL, S.J. and MACMANUS, D.G. (1984): ‘NMR in multiple sclerosis and cerebral vascular disease’, Lancet 8415 (2), pp. 1334–1335

    Article  Google Scholar 

  • PAXINOS, G., HUANG, X.F. (1995): ‘Atlas of the human brainstem’ (Academic Press, San Diego)

    Google Scholar 

  • RUMELHART, D.E., HINTON, G.E. and WILLIAMS, R.J. (1986): ‘Learning internal representations by error propagation’ in RUMELHART, D.E. and MCCLELLAND, J.L. (Eds.): ‘Parallel Distributed Processing: explorations in the microstructure of cognition. Vol. 1 (Foundations)’ (MIT Press, Cambridge, Massachusetts) pp. 318–362

    Google Scholar 

  • SHALTENBRAND, G. and WAHEM, W. (1977): ‘Atlas for stereotaxy of the human brain’ (Thieme, Stuttgart)

    Google Scholar 

  • SHARPE, P.K. and CALEB, P. (1994): ‘Artificial neural networks within medical decision support systems’, Scand. J. Clin. Lab. Invest. Suppl., 219, pp. 3–11

    Article  Google Scholar 

  • SIMPSON, P.K. (1990): ‘Artificial Neural Systems’ (Pergamon Press, New York)

    Google Scholar 

  • TURANO, G., JONES, S.J., MILLER, D.H., DU BOULAY, G.H., KAKIGI, R., and

    Google Scholar 

  • MCDONALD, W.I. (1991): ‘Correlation of SEP abnormalities with brain and cervical cord MRI in multiple sclerosis’, Brain 114 (Pt 1B), pp. 663–81

    MathSciNet  Google Scholar 

  • YANG, T.F., DEVINE, B. and MACFARLANE, P.W. (1994): ‘Artificial neural networks for the diagnosis of atrial fibrillation’, Med. Biol. Eng. Comput. 32, (6), pp. 615–619

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Capozza, M., Iannetti, G.D., Marx, J., Cruccu, G., Accornero, N. (2002). An Artificial Neural Network for 3D Localization of Brainstem Functional Lesions. In: Colosimo, A., Sirabella, P., Giuliani, A. (eds) Medical Data Analysis. ISMDA 2002. Lecture Notes in Computer Science, vol 2526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36104-9_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-36104-9_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00044-0

  • Online ISBN: 978-3-540-36104-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics