Skip to main content

A Multi-agent Architecture Integrating Learning and Fuzzy Techniques for Landmark-Based Robot Navigation

  • Conference paper
  • First Online:
Topics in Artificial Intelligence (CCIA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2504))

Included in the following conference series:

  • 550 Accesses

Abstract

This paper extends a navigation system implemented as a multi-agent system (MAS). The arbitration mechanism controlling the interactions between the agents was based on manually-tuned bidding functions. A difficulty with hand-tuning is that it is hard to handle situations involving complex tradeoffs. In this paper we explore the suitability of reinforcement learning for automatically tuning agents within a MAS to optimize a complex tradeoff, namely the camera use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.C. Arkin. Motor schema-based mobile robot navigation. Int. J. Robotics research, 8(4):92–112, 1989.

    Article  Google Scholar 

  2. M. Asada, S. Noda, S. Tawaratsumida, and Koh Hosoda. Purposive behavior acquisition for a real robot by vision-based reinforcement learning. Machine Learning, 23:279–303, 1996.

    Google Scholar 

  3. G. Bojadziev and M. Bojadziev. Fuzzy sets, fuzzy logic, applications, volume 5 of Advances in Fuzzy Systems. World Scientific, 1995.

    Google Scholar 

  4. R. Brooks. A robust layered control system for a mobile robot. IEEE J. of Robotics and Automation, RA-2(1):14–23, 1986.

    Google Scholar 

  5. A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable stochastic domains. In Proc. of the Twelfth National Conference on Artificial Intelligence, pages 1023–1028, Cambridge, MA, 1994. AAAI Press/MIT Press.

    Google Scholar 

  6. M. Teresa Escrig and F. Toledo. Autonomous robot navigation using human spatial concepts. Int. J. of Intelligent Systems, 15:165–196, 2000.

    Article  MATH  Google Scholar 

  7. R. Liscano et al. Using a blackboard to integrate multiple activities and achieve strategic reasoning for mobile-robot navigation. IEEE Expert, 10(2):24–36, 1995.

    Article  Google Scholar 

  8. C. Isik and A.M. Meystel. Pilot level of a hierarchical controller for an unmanned mobile robot. IEEE J. Robotics and Automation, 4(3):242–255, 1988.

    Article  Google Scholar 

  9. T.S. Levitt and D.T. Lawton. Qualitative navigation for mobile robots. Artificial Intelligence Journal, 44:305–360, 1990.

    Article  Google Scholar 

  10. P. Maes. The dynamics of action selection. In Proc. of IJCAI’89, pages 991–997, 1989.

    Google Scholar 

  11. A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning with less data and less time. Machine Learning, 13:103, 1993.

    Google Scholar 

  12. T.J. Prescott. Spatial representation for navigation in animats. Adaptive Behavior, 4(2):85–125, 1996.

    Article  Google Scholar 

  13. J. Rosenblatt. Damn: A distributed architecture for mobile navigation. In Proc. of the 1995 AAAI SpringSymposium on Lessons Learned from Implemented Software Architectures for Physical Agents. AAAI Press, March 1995.

    Google Scholar 

  14. C. Sierra, R. López de Mántaras, and D. Busquets. Multiagent bidding mechanisms for robot qualitative navigation. In Intelligent Agents VII. Lectures Notes in Artificial Intelligencee (Proc. of ATAL-2000), pages 198–212. Springer, Verlag, 2001.

    Google Scholar 

  15. A. Stentz. The codger system for mobile robot navigation. In C.E. Thorpe, editor, Vision and Navigation, the Carnegie Mellon Navlab, pages 187–201, Boston, 1990. Kluwer Academic Pub.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Busquets, D., de Màntaras, R.L., Sierra, C., Dietterich, T.G. (2002). A Multi-agent Architecture Integrating Learning and Fuzzy Techniques for Landmark-Based Robot Navigation. In: Escrig, M.T., Toledo, F., Golobardes, E. (eds) Topics in Artificial Intelligence. CCIA 2002. Lecture Notes in Computer Science(), vol 2504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36079-4_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-36079-4_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00011-2

  • Online ISBN: 978-3-540-36079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics