Skip to main content

Binding Logic: Proofs and Models

  • Conference paper
  • First Online:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2514))

Abstract

We define an extension of predicate logic, called Binding Logic, where variables can be bound in terms and in propositions. We introduce a notion of model for this logic and prove a soundness and completeness theorem for it. This theorem is obtained by encoding this logic back into predicate logic and using the classical soundness and completeness theorem there.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abadi, L. Cardelli, P.-L. Curien, J.-J. Lévy, Explicit substitutions, Journal of Functional Programming, 1,4 (1991) pp. 375–416.

    Article  MATH  MathSciNet  Google Scholar 

  2. P.B. Andrews, An introduction to mathematical logic and type theory: to truth through proof, Academic Press (1986).

    Google Scholar 

  3. A. Barber, Dual Intuitionistic Linear Logic, Technical Report ECS-LFCS-96-347, University of Edinburgh (1996).

    Google Scholar 

  4. N.G. de Bruijn, Lambda calculus notation with nameless dummies: a tool for automatic formula manipulation, with application to the Church-Rosser theorem, Indag. Math. 34, pp 381–392.

    Google Scholar 

  5. P.-L. Curien, Categorical combinators, sequential algorithms and functional programming, Birkhauser (1993).

    Google Scholar 

  6. P.-L. Curien, Th. Hardin and J.-J. Lévy, Weak and strong confluent calculi of explicit substitutions, Journal of the ACM, 43,2 (1996) pp. 362–397.

    Article  MATH  MathSciNet  Google Scholar 

  7. H.B. Curry, R. Feys, Combinatory Logic, I, North Holland, Amsterdam (1958).

    Google Scholar 

  8. G. Dowek, La part du calcul, Mémoire d’Habilitation à Diriger des Recherches, Université de Paris VII (1999).

    Google Scholar 

  9. G. Dowek, Th. Hardin and C. Kirchner, Higher-order unification via explicit substitutions, Information and Computation, 157 (2000) pp. 183–235.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Dowek, Th. Hardin and C. Kirchner, Theorem proving modulo, Rapport de Recherche 3400, INRIA (1998). To appear in Journal of Automated Reasonning.

    Google Scholar 

  11. G. Dowek, Th. Hardin and C. Kirchner, HOL-lambda-sigma: an intensional first-order expression of higher-order logic, Mathematical Structures in Computer Science, 11 (2001) pp. 1–25.

    Article  MathSciNet  Google Scholar 

  12. G. Dowek and B. Werner, Proof normalization modulo, Types for Proofs and Programs 98, T. Altenkirch, W. Naraschewski, B. Rues (Eds.), Lecture Notes in Computer Science 1657, Springer-Verlag (1999), pp. 62–77.

    Chapter  Google Scholar 

  13. M. Fiore, G. Plotkin, and D. Turi, Abstract syntax and variable binding, Logic in Computer Science (1999) pp. 193–202.

    Google Scholar 

  14. L. Henkin, Completeness in the theory of types, The Journal of Symbolic Logic, 15 (1950) pp. 81–91.

    Article  MATH  MathSciNet  Google Scholar 

  15. J.R. Hindley, Combinatory reductions and lambda reductions compared, Zeit. Math. Logik, 23 (1977) pp. 169–180.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Lambek, Deductive systems and categories II. Standard constructions and closed categories. Category theory, homology theory and their applications I, Lecture Notes in Mathematics, 86, Springer-Verlag (1969) pp. 76–122.

    Google Scholar 

  17. J. Lambek, Multicategories revisited, Contemporary Mathematics, 92 (1989) 217–239.

    MathSciNet  Google Scholar 

  18. D. Miller and G. Nadathur, A logic programming approach to manipulating formulas and programs. Symposium on Logic Programming (1987).

    Google Scholar 

  19. B. Pagano, X.R.S: eXplicit Reduction Systems, a first-order calculus for higher-order calculi, Conference on Automated Deduction, C. Kirchner and H. Kirchner (Eds.), LNAI 1421, Springer-Verlag (1998), pp. 72–88.

    Google Scholar 

  20. B. Pagano, Des calculs de substitution explicites et de leur application a la compilation des langages fonctionnels. Thése de Doctorat, Université de Paris VI (1998).

    Google Scholar 

  21. F. Pfenning and C. Elliott, Higher-order abstract syntax, Conference on Programming Language Design and Implementation, ACM Press, (1988) pp. 199–208.

    Google Scholar 

  22. S. Vaillant, Expressing set theory in first-order predicate logic, International Workshop on Explicit Substitutions Theory and Applications to Programs and Proofs (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dowek, G., Hardin, T., Kirchner, C. (2002). Binding Logic: Proofs and Models. In: Baaz, M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2002. Lecture Notes in Computer Science(), vol 2514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36078-6_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-36078-6_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00010-5

  • Online ISBN: 978-3-540-36078-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics