Skip to main content
  • 1338 Accesses

Summary

This paper deals with the numerical computation of invariant manifolds using a method of discretizing global manifolds. It provides a geometrically natural algorithm that converges regardless of the restricted dynamics. Common examples of such manifolds include limit sets, co-dimension 1 manifolds separating basins of attraction (separatrices), stable/unstable/center manifolds, nested hierarchies of attracting manifolds in dissipative systems and manifolds appearing in bifurcations. The approach is based on the general principle of normal hyperbolicity, where the graph transform leads to the numerical algorithms. This gives a highly multiple purpose method. The algorithm fits into a continuation context, where the graph transform computes the perturbed manifold. Similarly, the linear graph transform computes the perturbed hyperbolic splitting. To discretize the graph transform, a discrete tubular neighborhood and discrete sections of the associated vector bundle are constructed. To discretize the linear graph transform, a discrete (un)stable bundle is constructed. Convergence and contractivity of these discrete graph transforms are discussed, along with numerical issues. A specific numerical implementation is proposed. An application to the computation of the ‘slow-transient’ surface of an enzyme reaction is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.M. Boothby: An Introduction to Differentiable Manifolds and Riemannian Geometry (Academic Press, New York 1975)

    MATH  Google Scholar 

  2. H.W. Broer, A. Hagen, G. Vegter: Multiple purpose algorithms for invariant manifolds. Dynam. Contin. Discrete Implus. Systems B 10, 331–44 (2003)

    MATH  MathSciNet  Google Scholar 

  3. H.W. Broer, A. Hagen, G. Vegter: Numerical approximation of normally hyperbolic invariant manifolds. In: Proceedings of the 4th AIMS meeting 2002 at Wilmington, DCDS 2003, supplement volume, ed. by S. Hu (AIMS Press, Springfield MO 2003)

    Google Scholar 

  4. H.W. Broer, A. Hagen, G. Vegter: Numerical continuation of invariant manifolds. Preprint (2006)

    Google Scholar 

  5. H.W. Broer, H.M. Osinga, G. Vegter: Algorithms for computing normally hyperbolic invariant manifolds. Z. angew. Math. Phys. 48, 480–524 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Cairns: A simple triangulation method for smooth manifolds. Bull. Amer. Math. Soc., 67, 389–90 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Carey, J. Oden: Finite Elements, vol 3 (Prentice-Hall, New Jersey 1984)

    Google Scholar 

  8. P.G. Ciarlet, P. Raviart: General Lagrange and Hermite interpolation in ℝn with applications to finite element methods. Arch. Rational Mech. Anal. 46, 177–99 (1972)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. M. Dellnitz, G. Froyland, O. Junge: The algorithms behind GAIO-set oriented numerical methods for dynamical systems. In: Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems, ed. by B. Fiedler (Springer, Berlin 2001)

    Google Scholar 

  10. L. Dieci, J. Lorenz: Computation of invariant tori by the method of characteristics. SIAM J. Numer. Anal. 32, 1436–74 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Farin: Curves and Surfaces for Computer-Aided Geometric Design: a practical guide (Academic Press, New York 1997)

    MATH  Google Scholar 

  12. N. Fenichel: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  13. S.J. Fraser: The steady state and equilibrium approximations: a geometrical picture. J. Chem. Phys. 88, 4732–8 (1988)

    Article  ADS  Google Scholar 

  14. G. Golub, J.M. Ortega: Scientific Computing: an introduction with parallel computing (Academic Press, San Diego 1993)

    MATH  Google Scholar 

  15. A.N. Gorban, I.V. Karlin, A.Yu. Zinovyev: Constructive methods of invariant manifolds for kinetic problems. Physics Reports 396, 197–403 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  16. A.N. Gorban, I.V. Karlin, A.Yu. Zinovyev: Invariant grids for reaction kinetics. Physica A 333, 106–54 (2004)

    Article  ADS  Google Scholar 

  17. A. Haro, R. De La Llave: A parametrization method for the computation of invariant tori and their whiskers in quasi-periodic maps: numerical implementation and examples. Preprint (2005)

    Google Scholar 

  18. A. Hagen: Hyperbolic Structures of Time Discretizations and the Dependence on the Time Step. Ph.D. Thesis, University of Minnesota, Minnesota (1996)

    Google Scholar 

  19. A. Hagen: Hyperbolic trajectories of time discretizations. Nonlinear Anal. 59, 121–32 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. M.W. Hirsch: Differential Topology (Springer, Berlin Heidelberg New York 1994)

    MATH  Google Scholar 

  21. M.W. Hirsch, C.C. Pugh, M. Shub: Invariant Manifolds (Springer, Berlin Heidelberg New York 1977)

    MATH  Google Scholar 

  22. B. Krauskopf, H.M. Osinga: Computing geodesic level sets on global (un)stable manifolds of vector fields. SIAM J. Appl. Dyn. Sys. 4, 546–69 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Y. Kuznetsov: Elements of Applied Bifurcation Theory (Springer, Berlin Heidelberg New York 1998)

    MATH  Google Scholar 

  24. S. Lang: Introduction to Differentiable Manifolds (Springer, Berlin Heidelberg New York 2002)

    MATH  Google Scholar 

  25. D. Martin: Manifold Theory: an introduction for mathematical physicists. (Ellis Horwood Limited, England 2002)

    MATH  Google Scholar 

  26. C. Maunder: Algebraic Topology (Van Nostrand Reinhold, London 1970)

    MATH  Google Scholar 

  27. H.M. Osinga: Computing Invariant Manifolds. Ph.D. Thesis, University of Groningen, The Netherlands (1996)

    MATH  Google Scholar 

  28. J. Palis, F. Takens: Hyperbolicity & Sensitive Chaotic Dynamics at Homoclinic Bifurcations (Cambridge University Press, Cambridge 1993)

    MATH  Google Scholar 

  29. M. Phillips, S. Levy, T. Munzner: Geomview: an interactive geometry viewer. Notices of the Amer. Math. Soc. 40, 985–8 (1993)

    Google Scholar 

  30. M.R. Roussel, S.J. Fraser: On the geometry of transient relaxation. J. Chem. Phys. 94, 7106–13 (1991)

    Article  ADS  Google Scholar 

  31. D. Ruelle: Elements of Differentiable Dynamics and Bifurcation Theory (Academic Press, Boston 1989)

    MATH  Google Scholar 

  32. Y. Wong: Differential geometry of grassmann manifolds. Proc. NAS 57 589–94 (1967)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Broer, H.W., Hagen, A., Vegter, G. (2006). A Versatile Algorithm for Computing Invariant Manifolds. In: Gorban, A.N., Kevrekidis, I.G., Theodoropoulos, C., Kazantzis, N.K., Öttinger, H.C. (eds) Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35888-9_2

Download citation

Publish with us

Policies and ethics