Skip to main content

Summary

One of the classical questions of non-equilibrium thermodynamics is the validity of various closure approximations in nontrivial flows. We study this question for a lid-driven cavity flow using a minimal molecular model derived from the Boltzmann equation. In this nontrivial flow, we quantify the model as a superset of the Grad moment approximation and visualize the quality of the Chapman-Enskog and Grad closure approximations. It is found that the Grad closure approximation is strikingly more robust than the Chapman-Enskog approximation at all Knudsen numbers studied. Grad’s approximation is used to formulate a novel outflow boundary condition for lattice Boltzmann simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ansumali: Minimal Kinetic Modeling of Hydrodynamics. PhD thesis, ETH Zurich, (2004)

    Google Scholar 

  2. S. Ansumali, S.S. Chikatamarla, C.M. Frouzakis, K. Boulouchos: Entropic Lattice Boltzmann Simulation of the Flow Past Square Cylinder. Int. J. Mod. Phys. C 15(3), 435–445 (2004)

    Article  MATH  ADS  Google Scholar 

  3. S Ansumali, I.V. Karlin: Entropy Function Approach to the Lattice Boltzmann Method. J. Stat. Phys. 107(1–2), 291–308 (2002)

    Article  MATH  Google Scholar 

  4. S. Ansumali, I.V. Karlin: Kinetic Boundary Condition for the Lattice Boltzmann Method. Phys. Rev. E 66(2), 026311 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Ansumali, I.V. Karlin: Consistent Lattice Boltzmann Method. Phys. Rev. Lett. 95, 260605 (2005)

    Article  ADS  Google Scholar 

  6. S. Ansumali, I.V. Karlin, C.E. Frouzakis, K.B. Boulouchos: Entropic Lattice Boltzmann Method for Microflows. Physica A 359, 289–305 (2006)

    Article  ADS  Google Scholar 

  7. S. Ansumali, I.V. Karlin, H.C. Öttinger: Minimal Entropic Kinetic Models for Simulating Hydrodynamics. Europhys. Lett. 63(6), 798–804 (2003)

    Article  ADS  Google Scholar 

  8. S. Ansumali, I.V. Karlin, H.C. Öttinger: Thermodynamic Theory of Incompressible Hydrodynamics. Phys. Rev. Lett. 94, 080602 (2005)

    Article  ADS  Google Scholar 

  9. B.F. Armaly, F. Durst, J.C.F. Pereira, B. Schonung: Experimental and Theoretical Investigation of Backwardfacing Flow. J. Fluid Mech. 127, 473–496 (1983)

    Article  ADS  Google Scholar 

  10. A. Beskok, G.E. Karniadakis: Microflows: Fundamentals and Simulation (Springer, Berlin 2001)

    Google Scholar 

  11. B.M. Boghosian, J. Yepez, P.V. Coveney, A.J. Wagner: Entropic Lattice Boltzmann Methods. Proc. Roy. Soc. Lond. 457, 717–766 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. S. Chapman, T.G. Cowling: The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge 1970)

    Google Scholar 

  13. H. Chen, S. Chen, W. Matthaeus: Recovery of the Navier-Stokes Equation Using a Lattice-Gas Boltzmann method. Phys. Rev. A 45, R5339–R5342 (1992)

    Article  ADS  Google Scholar 

  14. H. Chen, S. Kandasamy, S. Orszag, R. Shock, S. Succi, V. Yakhot: Extended-Boltzmann Kinetic Equation for Turbulent Flows. Science 301, 633–636 (2003)

    Article  ADS  Google Scholar 

  15. S. Chen, G.D. Doolen: Lattice Boltzmann Method for Fluid Flows. Annu. Rev. Fluid Mech. 30, 329 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  16. S.S. Chikatamarla, S. Ansumali, I.V. Karlin: Grad’s Approximation for Missing Data in Lattice Boltzmann Simulations. Europhys. Lett., in press, 2006

    Google Scholar 

  17. A.N. Gorban, I.V. Karlin: Method of Invariant Manifolds and Regularization of Acoustic Spectra. Transport Theory Stat. Phys. 23, 559–632 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. A.N. Gorban, I.V. Karlin: Short-wave Limit of Hydrodynamics: A Soluble Example. Phys. Rev. Lett. 77, 282–285 (1996)

    Article  ADS  Google Scholar 

  19. A.N. Gorban, I.V. Karlin: Invariant Manifolds for Physical and Chemical Kinetics, vol. 660 in Lect. Notes Phys. (Springer, Berlin Heidelberg 2005)

    MATH  Google Scholar 

  20. H. Grad: On the Kinetic Theory of Rarefied Gases. Comm. Pure Appl. Math. 2, 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  21. X. He, S. Chen, G.D. Doolen: A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit. J. Comput. Phys. 146(1), 282–300 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. F. Higuera, S. Succi, R. Benzi: Lattice Gas-Dynamics with Enhanced Collisions. Europhys. Lett. 9, 345–349 (1989)

    Article  ADS  Google Scholar 

  23. J.-Z. Jiang, J. Fan, C. Shen: Statistical Simulation of Micro-cavity Flows. 23rd Int. Symposium on Rarefied Gas Dynamics, pages 784–790, (2003)

    Google Scholar 

  24. L.K. Kaiktsis, G.E. Karniadakis, S.A. Orszag: Onset of Three-dimensionality, Equilibria, and Early Transition in Flow Over a Backward-facing Step. J. Fluid Mech. 231, 501 (1991)

    Article  MATH  ADS  Google Scholar 

  25. I.V. Karlin, A. Ferrante, H.C. Öttinger: Perfect Entropy Functions of the Lattice Boltzmann Method. Europhys. Lett. 47, 182–188 (1999)

    Article  ADS  Google Scholar 

  26. I.V. Karlin, A. Gorban, S. Succi, V. Boffi: Maximum Entropy Principle for Lattice Kinetic Equations. Phys. Rev. Lett. 81, 6–9 (1998)

    Article  ADS  Google Scholar 

  27. I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg, C. Theodoropoulos: Equation-free: Coarse-grained Multiscale Computation Enabling Microscopic Simulators to Perform System-level Analysis. Comm. Math. Sci. 1, 715–762 (2003)

    MATH  MathSciNet  Google Scholar 

  28. J. Kim, P. Moin: Application of a Fractional-step Method to Incompressible Navier-Stokes Equations. J. Comput. Phys. 59, 308 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. T. Lee, C.-L. Lin: Rarefaction and Compressibility Effects of the Latticeboltzmann-equation Method in a Gas Microchannel. Phys. Rev. E 71, 046706 (2005)

    Article  ADS  Google Scholar 

  30. R.B Lehoucq, D.C Sorensen, C. Yang: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. (SIAM 1998)

    Google Scholar 

  31. X. D. Niu, C. Shu, Y.T. Chew: Lattice Boltzmann BGK Model for Simulation of Micro Flows. Europhys. Lett. 67, 600–606 (2003)

    Article  ADS  Google Scholar 

  32. Y.H. Qian, D. d’Humieres, P. Lallemand: Lattice BGK Models for Navier-Stokes Equation. Europhys. Lett. 17, 479–484 (1992)

    Article  ADS  MATH  Google Scholar 

  33. X. Shan, X. He: Discretization of the Velocity Space in the Solution of the Boltzmann Equation. Phys. Rev. Lett. 80, 65 (1998)

    Article  ADS  Google Scholar 

  34. M. Slemrod: Renormalization of the Chapman-Enskog Expansion: Isothermal Fluid Flow and Rosenau Saturation. J. Stat. Phys. 91, 285–305 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Succi, R Benzi, M. Vergassola: The Lattice Boltzmann-Equation — Theory and Applications. Phys. Rep. 222, 145–197 (1992)

    Article  ADS  Google Scholar 

  36. S Succi, I. V. Karlin, H. Chen: Role of the H theorem in Lattice Boltzmann Hydrodynamics. Rev. Mod. Phys. 74, 1203 (2002)

    Article  ADS  Google Scholar 

  37. S. Succi, M. Sbragaglia: Analytical Calculation of Slip Flow in Lattice Boltzmann Models with Kinetic Boundary Conditions. Phys. Fluids 17(9), 093602 (2005)

    Article  ADS  Google Scholar 

  38. K. Theodoropoulos, Y.-H. Qian, I.G. Kevrekidis: “Coarse” Stability and Bifurcation Analysis Using Timesteppers: a Reaction-diffusion Example. Proc. Natl. Acad. Sci. 97(18), 9840–9843 (2000)

    Article  MATH  ADS  Google Scholar 

  39. F. Toschi, S. Succi: Lattice Boltzmann Method at Finite Knudsen Numbers. Europhys. Lett. 69, 549–555 (2005)

    Article  ADS  Google Scholar 

  40. S. Ubertini, S. Succi: Recent Advances of Lattice Boltzmann Techniques on Unstructured Grids. Progress in Computational Fluid Dynamics 5, 85–96 (2005)

    Article  MathSciNet  Google Scholar 

  41. Y. Zhang, R. Qin, D.R. Emerson: Lattice Boltzmann Simulation of Rarefied Gas Flows in Microchannels. Phys. Rev. E 71, 047702 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ansumali, S., Chikatamarla, S.S., Frouzakis, C.E., Karlin, I.V., Kevrekidis, I.G. (2006). Lattice Boltzmann Method and Kinetic Theory. In: Gorban, A.N., Kevrekidis, I.G., Theodoropoulos, C., Kazantzis, N.K., Öttinger, H.C. (eds) Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35888-9_18

Download citation

Publish with us

Policies and ethics