What Can Cellular Automata Tell Us about the Behavior of Large Multi-agent Systems?

  • Franco Zambonelli
  • Marco Mamei
  • Andrea Roli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2603)


This paper describes the behavior observed in a class of cellular automata that we have defined as “dissipative”, i.e., cellular automata for which the external environment can somehow inject “energy” to dynamically influence the evolution of the automata. In this class of cellular automata, we have observed that stable macro-level global structures emerge from local interactions among cells. Since dissipative cellular automata express characteristics strongly resembling those of open multi-agent systems, we expect that similar sorts of macro-level behaviors are likely to emerge in multiagent systems and need to be studied, controlled, and possibly fruitfully exploited. A preliminary set of experiments reporting two ways of indirectly controlling the behavior of dissipative cellular automata are reported and discussed w.r.t. the possibility of applying similar sort of indirect control on large multi-agent systems.


Cellular Automaton Multiagent System Cellular Automaton Transition Rule Emergent Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Albert, H. Jeong, A. Barabasi, “Diameter of the World Wide Web”, Nature, 401:130–131, 9 Sept. 1999.CrossRefGoogle Scholar
  2. 2.
    R. Albert, H. Jeong, A. Barabasi, “Error and Attack Tolerance of Complex Networks”, Nature, 406:378–382, 27 July 2000.CrossRefGoogle Scholar
  3. 3.
    Y. Bar-Yam, Dynamics of Complex systems. Addison-Wesley, 1997.Google Scholar
  4. 4.
    T. D. Barfoot, G. M. T. D’Eleuterio, “Multiagent Coordination by Stochastic Cellular Automata“, Proceeding of the Joint International Conference on Artificial Intelligence, Seattle (WA), Aug. 2001.Google Scholar
  5. 5.
    E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence. From Natural to Artificial Systems, Santa Fe Institute-Studies in the Science of Complexity. Oxford University Press, 1999.Google Scholar
  6. 6.
    G. Cabri, L. Leonardi, F. Zambonelli, “Engineering Mobile Agent Applications via Context-Dependent Coordination”, IEEE Transactions on Software Engineering, 28(11), Nov. 2002.Google Scholar
  7. 7.
    C. V. Goldman, S. Kraus, O. Shehory, “Equilibria Strategies for Selecting Sellers and Satisfying Buyers”, Proc. of the 5th International Workshop on Cooperative Information Agents, LNAI, No. 2182, pp. 166–177, Sept. 2001.Google Scholar
  8. 8.
    R. Gustavsson, M. Fredriksson, “Coordination and Control in Computational Ecosystems: A Vision of the Future”, in Coordination of Internet Agents, A. Omicini al (Eds.), Springer Verlag, pp. 443–469, 2001.Google Scholar
  9. 9.
    J.J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities”, Proc. of the National Academy of Science, 79:2554–2558, 1982.Google Scholar
  10. 10.
    B. A. Hubermann, T. Hogg, “The Emergence of Computational Ecosystems”, in SFI Studies in the Science of Complexity, Vol. V, Addison-Wesley, 1993.Google Scholar
  11. 11.
    T. E. Ingerson, R. L. Buvel, “Structure in Asynchronous Cellular Automata”, Physica D, 10:59–68, 1984.CrossRefMathSciNetGoogle Scholar
  12. 12.
    N. R. Jennings, “On Agent-Based Software Engineering”, Artificial Intelligence, 117(2), 2000.Google Scholar
  13. 13.
    S. A. Kauffman, The origins of order, Oxford University Press, New York, 1993.Google Scholar
  14. 14.
    E. D. Lumer, G. Nicolis, “Synchronous Versus Asynchronous Dynamics in Spatially Distributed Systems”, Physica D, 71:440–452, 1994.zbMATHCrossRefGoogle Scholar
  15. 15.
    M. Mamei, M. Mahan, “Engineering Mobility in Large Multi-agent Systems”, 2003in this volume.Google Scholar
  16. 16.
    M. Mamei, L. Leonardi, F. Zambonelli, “Co-Fields: Towards a Unifying Model for Swarm Intelligence”, 3rd International Workshop on Engineering Societies in the Agents’ World, Madrid (E), Sept. 2002.Google Scholar
  17. 17.
    Y. Moses, M. Tenneholtz, “Artificial Social Systems”, Computers and Artificial Intelligence, 14(3):533–562, 1995.MathSciNetGoogle Scholar
  18. 18.
    G. Nicolis, I. Prigogine, Exploring Complexity: an Introduction, W. H. Freeman, 1989.Google Scholar
  19. 19.
    V. Parunak, “Go to the Ant: Engineering Principles from Natural Agent Systems”, Annals of Operations Research, 75:69–101, 1997.zbMATHCrossRefGoogle Scholar
  20. 20.
    V. Parunak, S. Bruekner, J. Sauter, “ERIM’s Approach to Fine-Grained Agents”, NASA/JPL Workshop on Radical Agent Concepts, Greenbelt (MD), 2002.Google Scholar
  21. 21.
    M. Ripeani, A. Iamnitchi, I. Foster, “Mapping the Gnutella Network”, IEEE Internet Computing, 6(1):50–57, Jan.–Feb. 2002.CrossRefGoogle Scholar
  22. 22.
    B. Schönfisch, A. De Roos, “Synchronous and Asynchronous Updating in Cellular Automata”, BioSystems, 51(3):123–143, 1999.CrossRefGoogle Scholar
  23. 23.
    M. Sipper. “The Emergence of Cellular Computing”. IEEE Computer, 37(7), July 1999.Google Scholar
  24. 24.
    D. Tennenhouse, “Proactive Computing”, Communications of the ACM, May 2000.Google Scholar
  25. 25.
    D. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness, Princeton University Press (Princeton, NJ), 1999.Google Scholar
  26. 26.
    S. Wolfram, Cellular Automata and Complexity. Addison-Wesley, 1994.Google Scholar
  27. 27.
    S. Wolfram, A New Kind of Science, Wolfram Media Inc. 2002.Google Scholar
  28. 28.
    J. T. Wootton, “Local Interactions Predict Large-scale Patterns in Empirically Derived Cellular Automata”, Nature, 413: 841:844, 25 Oct. 2001.CrossRefGoogle Scholar
  29. 29.
    F. Zambonelli, M. Mamei, “The Cloak of Invisibility: Challenges and Applications”, IEEE Pervasive Computing, 1(4):63–72, Oct.–Dec. 2002.CrossRefGoogle Scholar
  30. 30.
    F. Zambonelli, N. R. Jennings, M. J. Wooldridge, “Organizational Abstractions for the Analysis and Design of Multi-agent Systems, 1st Workshop on Agent-Oriented Software Engineering, LNCS No. 1957, Jan. 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Franco Zambonelli
    • 1
  • Marco Mamei
    • 1
  • Andrea Roli
    • 2
  1. 1.Dipartimento di Scienze e Metodi dell’IngegneriaUniversitá di Modena e Reggio EmiliaReggio EmiliaItaly
  2. 2.Dipartimento di Elettronica Informatica e SistemisticaUniversitá di BolognaBolognaItaly

Personalised recommendations