Skip to main content

Radiobiology of Low- and High-Dose-Rate Brachytherapy

  • Chapter
Technical Basis of Radiation Therapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 2917 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armour E, Wang Z, Corry P, Martinez A (1992) Equivalence of continuous and pulse simulated low dose rate irradiation in 9L gliosarcoma cells at 37° and 41°C. Int J Radiat Oncol Biol Phys 22:109–114

    PubMed  CAS  Google Scholar 

  • Armour E, White A Jr, Armin A, Lorry P, Coffey M, Dewitt C, Martinez A (1997) Pulsed LDR brachytherapy in a rat model; dependence of late rectal injury on radiation pulse size. Int J Radiat Oncol Biol Phys 38:825–834

    Article  PubMed  CAS  Google Scholar 

  • Bedford JS, Mitchell B (1973) Dose-rate effects in synchronous mammalian cells in culture. Radiat Res 54:316–327

    PubMed  CAS  Google Scholar 

  • Bell AG (1903) Correspondence. American Medicine

    Google Scholar 

  • Brenner DJ, Hall EJ (1991a) Fractionated high dose-rate versus low dose-rate brachytherapy of the cervix. I. General considerations based on radiobiology. Br J Radiat 64:133–141

    CAS  Google Scholar 

  • Brenner DJ, Hall EJ (1991b) Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys 20:181–190

    PubMed  CAS  Google Scholar 

  • Brenner DJ, Hall EJ, Huang Y, Sachs RK (1994) Optimizing the time course of brachytherapy and other accelerated radiotherapeutic regimes. Int J Radiat Oncol Biol Phys 29:893–901

    PubMed  CAS  Google Scholar 

  • Brenner DJ, Hall EJ, Randers-Pehrson G, Huang YP, Johnson GW, Miller RW, Wu B, Vazquez ME, Medvedovsky C, Worgul BV (1996) Quantitative comparisons of continuous and pulsed low dose-rate regimens in a model late-effect system. Int J Radiat Oncol Biol Phys 34:905–910

    Article  PubMed  CAS  Google Scholar 

  • Chen CZ, Huang Y, Hall EJ, Brenner DJ (1997) Pulsed brachytherapy as a substitute for continuous low dose rate: an in vitro study with human carcinoma cells. Int J Radiat Oncol Biol Phys 37:137–143

    Article  PubMed  CAS  Google Scholar 

  • Eifel PH (1992) High-dose-rate brachytherapy for carcinoma of the cervix: High tech or risk risk? Int J Radiat Oncol Biol Phys 24:383

    PubMed  CAS  Google Scholar 

  • Ellis F (1968) Dose time and fractionation in radiotherapy. In: Howard EM (ed) Current topics in radiation research, vol 4. Amsterdam, North Holland, pp 359–397

    Google Scholar 

  • Evans HJ (1962) Chromosome aberrations induced by ionizing radiation. Int Rev Cytol 13:221–321

    CAS  Google Scholar 

  • Fowler JF (1989) Dose rate effects in normal tissues. In: Mould RF (ed) Brachytherapy 2. Nucletron, The Netherlands, p 26

    Google Scholar 

  • Gray LH (1944) Dose-rate in radiotherapy. Br J Radiol 17:327–335

    Article  Google Scholar 

  • Hall EJ (1985) The biological basis of endocurie therapy. The Henschke Memorial Lecture 1984. Endocurie Hypertherm Oncol 1:141–151

    Google Scholar 

  • Hall EJ (2000) Radiobiology for the radiologist, 5th edn. Lippincott, Williams and Wilkins, Philadelphia

    Google Scholar 

  • Hall EJ, Bedford JS (1964) Dose-rate: its effect on the survival of HeLa cells irradiated with gamma-rays. Radiat Res 22:305–315

    PubMed  CAS  Google Scholar 

  • Hall EJ, Brenner DJ (1992) The 1991 George Edelstyn Lecture: needles, wires and chips-advances in brachytherapy. Clin Oncol 4:249–256

    Article  CAS  Google Scholar 

  • Harms W, Krempien R, Grehn C, Berns C, Hensley FW, Debus J (2005) Daytime pulsed dose rate brachytherapy as a new treatment option for previously irradiated patients with recurrent oesophageal cancer. Br J Radiol 78:236–241

    Article  PubMed  CAS  Google Scholar 

  • Karaiskos P, Angelopoulos A, Pantelis E, Papagiannis P, Sakelliou L, Kouwenhoven E, Baltas D (2003) Monte Carlo dosimetry of a new 192Ir pulsed dose rate brachytherapy source. Med Phys 30:9–16

    Article  PubMed  CAS  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  • Lea DEA (1956) Actions of radiations on living cells, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) P53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849

    Article  PubMed  CAS  Google Scholar 

  • Mason KA, Thames HD, Ochran TG, Ruifrok AC, Janjan N (1994) Comparison of continuous and pulsed low dose rate brachytherapy: biological equivalence in vivo. Int J Radiat Oncol Biol Phys 28:667–671

    PubMed  CAS  Google Scholar 

  • Mazeron JJ, Simon JM, Crook J et al (1991a) Influence of doserate on local control of breast carcinoma treated by external beam irradiation plus iridium-192 implant. Int J Radiat Oncol Biol Phys 21:1173–1177

    PubMed  CAS  Google Scholar 

  • Mazeron JJ, Simon JM, Le Pechoux C, et al (1991b) Effect of dose-rate on local control and complications in definitive irradiation of T1–2 squamous cell carcinomas of mobile tongue and floor of mouth with interstitial iridium-192. Radiother Oncol 21:39–47

    Article  PubMed  CAS  Google Scholar 

  • Mazeron JJ, Boisserie G, Baltas D (1997) Pulsed dose rate brachytherapy: a survey. Curr Oncol 4[Suppl 1]:S4–S6

    Google Scholar 

  • Meredith WJ, Editor (1967) Radium dosage: the Manchester system, 2nd edn. Livingstone, Edinburgh

    Google Scholar 

  • Mitchell B, Bedford JS, Bailey SM (1979) Dose-rate effects in plateau-phase cultures of S3 HeLa and V79 cells. Radiat Res 79:520–536

    PubMed  CAS  Google Scholar 

  • Moulder JE, Fish BL (1992) Repair of sublethal damage in the rat kidney (abstract). In: Chapman, Dewey JD, Dewey WC, Whitmore GF (eds) Radiation research: a twentieth-century perspective, vol 1. Academic Press, San Diego CA

    Google Scholar 

  • Orton CG (1989) Remote afterloading for cervix cancer: the physicist’s point of view. In: Martinez AA, Orton, DG, Mould RF (eds) Brachytherapy HDR and LDR. Proceedings of brachytherapy meeting on remote afterloading: state of the art, Dearborn, Michigan May 1989. Nucletron, The Netherlands

    Google Scholar 

  • Orton CG, Seyedsadr M, Somnay A (1991) Comparison of high and low dose rate remote afterloading for cervix cancer and the importance of fractionation. Int J Radiat Oncol Biol Phys 21:1425–1434

    PubMed  CAS  Google Scholar 

  • Paterson R (1963) Treatment of malignant disease by radiotherapy. Williams and Wilkins, Baltimore

    Google Scholar 

  • Perez-Calatayud J, Ballester F, Serrano-Andres MA, Puchades V, Lluch JL, Limami Y, Casal F (2001) Dosimetry characteristics of the Plus and 12i Gammamed PDR 192Ir sources. Med Phys 12:2576–2585

    Article  Google Scholar 

  • Pierquin B (1971) Dosimetry: the relational system. Proceedings of a conference on afterloading in radiotherapy. US Department of Health, Education and Welfare. Publication number (FDA) 72-8024, Rockville, New York, pp 204–227

    Google Scholar 

  • Pierquin B, Chassagne D, Baillet F et al (1973) Clinical observations on the time factor in interstitial radiotherapy using iridium-192. Clin Radiol 24:506–509

    Article  PubMed  CAS  Google Scholar 

  • Resch A, Fellner C, Mock U, Handl-Zeller L, Biber E, Seitz W, Potter R (2002) Locally recurrent breast cancer: pulse dose rate brachytherapy for repeat irradiation following lumpectomy-a second chance to preserve the breast. Radiology 225:713–718

    PubMed  Google Scholar 

  • Stitt JA, Fowler JF, Thomadsen BR et al (1992) High dose rate intracavitary brachytherapy for carcinoma of the cervix: the Madison system. I. Clinical and radiological considerations. Int J Radiat Oncol Biol Phys 24:335–348

    PubMed  CAS  Google Scholar 

  • Thames Jr HD, Withers HR, Peters LJ (1984) Tissue repair capacity and repair kinetics deduced from multifractionated or continuous irradiation regimens with incomplete repair. Br J Cancer 49:263–269

    Google Scholar 

  • Thomadsen BR, Shahabi S, Stitt JA et al (1992) High dose rate intracavitary brachytherapy for carcinoma of the cervix: the Madison system. II. Procedural and physical considerations. Int J Radiat Oncol Biol Phys 24:349–357

    PubMed  CAS  Google Scholar 

  • Turesson I, Thames HD (1989) Repair capacity and kinetics of human skin during fractionated radiotherapy: erythenam desquamation, and telangiectasia after 3 and 5 year’s follow-up. Radiother Oncol 15:169–188

    Article  PubMed  CAS  Google Scholar 

  • Van Rongen E, Thames HD, Travis EL (1993) Recovery from radiation damage in mouse lung: interpretations in terms of two rates of repair. Radiat Res 133:225–233

    PubMed  Google Scholar 

  • Visser AG, van den Aardweg JM, Levendag PC (1996) Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments. Int J Radiat Oncol Biol Phys 34:497–505

    Article  PubMed  CAS  Google Scholar 

  • Ward JF (1981) Some biochemical consequences of the spatial distribution of ionizing radiation produced free radicals. Radiat Res 86:185–195

    PubMed  CAS  Google Scholar 

  • Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation and repairability. Prog Nucleic Acids Mol Biol 35:95–125

    Article  CAS  Google Scholar 

  • Withers HR, Thames HD, Peters LJ (1982) Differences in the fractionation response of acutely and late-responding tissues. In: Karcher KH, Kolgelnik HD, Reinartz G (eds) Progress in radio-oncology, vol II. Raven, New York, pp 287–296

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hall, E.J., Brenner, D.J. (2006). Radiobiology of Low- and High-Dose-Rate Brachytherapy. In: Levitt, S.H., Purdy, J.A. (eds) Technical Basis of Radiation Therapy. Medical Radiology. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35665-7_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-35665-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21338-3

  • Online ISBN: 978-3-540-35665-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics