Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 705))

Abstract

If one applies tensile stress on a solid, the solid elongates and gets strained. The stress (σ) – strain ( ε) relation is linear for small stresses (Hooke’s law) after which nonlinearity appears in most cases. Finally at a critical stress σf, depending on the material, amount of disorder, the specimen size, etc., the solid breaks into pieces; fracture occurs. In the case of brittle solids, the fracture occurs immediately after the Hookean linear region, and consequently the linear elastic theory can be applied to study the essentially nonlinear and irreversible static fracture properties of brittle solids [1]. With extreme perturbation, therefore, the mechanical or electrical properties of solids tend to get destabilised and failure or breakdown occurs. In fact, these instabilities in the solids often nucleate around disorder, which then plays a major role in the breakdown properties of the solids. The growth of these nucleating centres, in turn, depends on various statistical properties of the disorder, namely the scaling properties of percolating structures, its fractal dimensions, etc. These statistical properties of disorder induce some scaling behaviour for the breakdown of the disordered solids [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Lawn, Fracture of Brittle Solids, Cambridge University Press, Cambridge (1993).

    Google Scholar 

  2. B.K. Chakrabarti and L.G. Benguigui, Statistical Physics of Fracture and Breakdown in Disorder Systems, Oxford University Press, Oxford (1997).

    Google Scholar 

  3. H.J. Herrmann and S. Roux (Eds.), Statistical Models for the Fracture of Disordered Media, Elsevier, Amsterdam (1990); M. Sahimi, Heterogeneous Materials, Vol. II, Springer, New York (2003).

    Google Scholar 

  4. D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London (1992).

    Google Scholar 

  5. A.A. Griffith, Phil. Trans. Roy. Soc. London A 221 163 (1920).

    Google Scholar 

  6. F.T. Pierce, J. Textile Inst. 17, T355–368 (1926).

    Google Scholar 

  7. H.E. Daniels, Proc. R. Soc. London A 183 405 (1945); S.L. Phoenix, SIAM J. Appl. Math. 34 227 (1978); Adv. Appl. Prob. 11 153 (1979).

    Article  Google Scholar 

  8. S. Pradhan and B.K. Chakrabarti, Int. J. Mod. Phys. B 17 5565 (2003).

    Article  Google Scholar 

  9. P.C. Hemmer and A. Hansen, J. Appl. Mech. 59 909 (1992); M. Kloster, A. Hansen and P.C. Hemmer, Phys. Rev. E 56 2615 (1997); S. Pradhan, A. Hansen and P.C. Hemmer, Phys. Rev. Lett. 95 125501 (2005); F. Raischel, F. Kun and H.J. Herrmann, cond-mat/0601290 (2006).

    Google Scholar 

  10. S. Pradhan and B.K. Chakrabarti, Phys. Rev. E 65 016113 (2001); S. Pradhan, P. Bhattacharyya and B.K. Chakrabarti, Phys. Rev. E 66 016116 (2002); P. Bhattacharyya, S. Pradhan and B.K. Chakrabarti, Phys. Rev. E 67 046122 (2003).

    Article  Google Scholar 

  11. R.C. Hidalgo, F. Kun and H.J. Herrmann, Phys. Rev. E 64 066122 (2001); S. Pradhan, B.K. Chakrabarti and A. Hansen, Phys. Rev. E 71 036149 (2005).

    Article  Google Scholar 

  12. B. Gutenberg and C.F. Richter, Seismicity of the Earth and Associated Phenomena, Princeton University Press, Princeton, NJ (1954).

    Google Scholar 

  13. L. Knopoff, Proc. Natl. Acad. Sci. USA 97 11880 (2000); Y.Y. Kagan, Physica D 77 160 (1994); C.H. Scholz, The Mechanics of Earthquake and Faulting, Cambridge University Press, Cambridge (1990); B.V. Kostrov and S. Das, Principles of Earthquake Source Mechanics, Cambridge University Press, Cambridge (1988).

    Article  Google Scholar 

  14. R. Burridge and L. Knopoff, Bull. Seis. Soc. Am. 57 341–371 (1967).

    Google Scholar 

  15. J.M. Carlson and J.S. Langer, Phys. Rev. Lett. 62 2632–2635 (1989); J.M. Carlson, J.S. Langer and B.E. Shaw, Rev. Mod. Phys. 66 657–670 (1994); G. Ananthakrishna and H. Ramachandran in Nonlinearity and Breakdown in Soft Condensed Matter, Eds. K.K. Bardhan, B.K. Chakrabarti and A. Hansen, LNP 437, Springer Verlag, Heidelberg (1994); T. Mori and H. Kawamura, Phys. Rev. Letts. 94 058501 (2005).

    Article  Google Scholar 

  16. P. Bak, How Nature Works, Oxford University Press, Oxford (1997).

    Google Scholar 

  17. B.K. Chakrabarti and R.B. Stinchcombe, Physica A 270 27 (1999); S. Pradhan, B.K. Chakrabarti, P. Ray and M.K. Dey, Phys. Scripta T 106 77 (2003).

    Article  Google Scholar 

  18. P. Bhattacharyya, Physica A 348 199 (2005).

    Article  Google Scholar 

  19. D.J. Bergman and D. Stroud, in Solid State Physics, 46 Eds. H. Ehrenreich and D. Turnbull, Academic Press, New York, p. 147 (1992).

    Google Scholar 

  20. S. Pradhan and B. K. Chakrabarti, Phys. Rev. E 67 046124 (2003)

    Article  Google Scholar 

  21. D. Sornette, Critical Phenomena in Natural Sciences, Chaos, Fractals, Self-Organization and Disorder: Concepts and Tools, 2nd Ed., Springer, Heidelberg (2004)

    Google Scholar 

  22. A. Politi, S. Ciliberto and R. Scorretti, Phys. Rev. E 66 026107 (2002)

    Article  Google Scholar 

  23. V. de Rubeis, R. Hallgass, V. Loreto, G. Paladin, L. Pietronero and P. Tosi, Phys. Rev. Lett. 76 2599 (1996).

    Article  Google Scholar 

  24. B.K. Chakrabarti and A. Chatterjee, in Proc. The Seventh International Conference on Vibration Problems ICOVP-2005, Istanbul, Ed. E. Inan (Springer, 2006), arXiv:cond-mat/0512136; P. Bhattacharyya, A. Chatterjee and B.K. Chakrabarti, arXiv:physics/0510038.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Chakrabarti, B. (2006). Statistical Physics of Fracture and Earthquake. In: Bhattacharyya, P., Chakrabarti, B.K. (eds) Modelling Critical and Catastrophic Phenomena in Geoscience. Lecture Notes in Physics, vol 705. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35375-5_1

Download citation

Publish with us

Policies and ethics