Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 704))

  • 2598 Accesses

Abstract

By definition, soft matter systems react sensitively upon external mechanical perturbations. This material class includes mesoscopic complex fluids such as colloidal suspensions. It is a major challenge to understand the fascinating properties of colloids from first principles, i.e., by deriving its properties from the microscopic interactions. Here, concepts borrowed from statistical physics are described, which are capable to overbridge the gap from microscopic over mesoscopic to macroscopic length scales. This is illustrated explicitly for charged colloidal suspensions and for star polymer solutions. A particular emphasis is placed on density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a recent review, see: T. A. Witten (1999) Insights from soft condensed matter. Rev. Mod. Phys. 71, pp. S367–S373

    Google Scholar 

  2. R. J. Hunter (1989) Foundations of Colloid Science Volume I, Oxford Science Publications, Clarendon Press, Oxford

    Google Scholar 

  3. See e.g.: S. Neser, C. Bechinger, P. Leiderer, T. Palberg (1997) Finite-Size Effects on the Closest Packing of Hard Spheres. Phys. Rev. Letters 79, pp. 2348–2351

    Google Scholar 

  4. For a review see: G. S. Grest, L. J. Fetters, J. S. Huang, D. Richter (1996) Star Polymers: Experiment, theory and simulation. Advances in Chemical Physics Volume XCIV, p. 67

    Google Scholar 

  5. J.-P. Hansen, H. Löwen (2002) Effective interactions for large-scale simulations of complex fluids, in: Bridging Time Scales: Molecular Simulations for the Next Decade P. Nielaba, M. Mareschal, G. Ciccotti (Eds.), Springer, Berlin, pp. 167–198, ISBN 3-540-44317-7

    Chapter  Google Scholar 

  6. C. N. Likos (2001) Effective interactions in soft condensed matter physics. Physics Reports 348, pp. 267–439

    Google Scholar 

  7. L. Belloni (2000) Colloidal interactions. J. Phys.: Condens. Matter 12, pp. R549–R587

    Article  ADS  Google Scholar 

  8. J. P. Hansen, H. Löwen (2000) Effective interactions between electric doublelayers. Ann. Rev. Phys. Chem. 51, pp. 209–242

    Article  ADS  Google Scholar 

  9. M. Dijkstra (2001) Computer simulations of charge and steric stabilised colloidal suspensions. Current Opinion in Colloid and Interface Science 6, pp. 372–382

    Article  Google Scholar 

  10. See e.g. R. van Roij, M. Dijkstra, J. P. Hansen (1999) Phase diagram of chargestabilized colloidal suspensions: van der Waals instability without attractive forces. Phys. Rev. E 59, pp. 2010–2025

    Google Scholar 

  11. H. Löwen (1994) Melting, freezing and colloidal suspensions. Phys. Reports 237, pp. 249–324

    Google Scholar 

  12. For an extensive review of classical DFT see R. Evans in Fundamentals of Inhomogeneous Fluids. edited by D. Henderson (Marcel Decker, New York, 1992)

    Google Scholar 

  13. J. P. Hansen and E. Smargiassi (1996) in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, edited by K. Binder and G. Ciccotti Societa Italiana di Fisica, Bologna

    Google Scholar 

  14. See e.g. G. Galli and M. Parrinello (1991) in Computer Simulations in Materials Science. P. 282, edited by M. Meyer and V. Pontikis Kluwer, Dordrecht

    Google Scholar 

  15. H. Löwen, J. P. Hansen, P. A. Madden (1993) Nonlinear counterion screening in colloidal suspensions. J. Chem. Phys. 98, pp. 3275–3289

    Article  ADS  Google Scholar 

  16. F. Gygi, G. Galli (1995) Real-space adaptive-coordinate electronic-structure calculations. Phys. Rev. B 52, pp. R2229–R2232

    Article  ADS  Google Scholar 

  17. R. Roth, R. Evans, S. Dietrich (2000) Depletion potential in hard-sphere mixtures: Theory and applications. Phys. Rev. E 62, pp. 5360–5377

    Article  ADS  Google Scholar 

  18. D. Goulding, S. Melchionna (2001) Accurate calculation of three-body depletion interactions. Phys. Rev. E 64, p. 011403 (1-9)

    Article  ADS  Google Scholar 

  19. Y. Rosenfeld, M. Schmidt, H. Löwen, P. Tarazona (1997) Fundamental-measure free energy density functional for hard spheres: Dimensional crossover and freezing. Phys. Rev. E 55, pp. 4245-4263

    Article  ADS  Google Scholar 

  20. H. Löwen (2000) in: “Spatial Statistics and Statistical Physics”, edited by K. Mecke and D. Stoyan, Springer Lecture Notes in Physics 554, pp. 295–331, Berlin

    Google Scholar 

  21. A. Lang, C. N. Likos, M. Watzlawek, H. Löwen (2000) Fluid and solid phases of the Gaussian core model. J. Phys.: Condensed Matter 12, pp. 5087–5108

    Article  ADS  Google Scholar 

  22. C. N. Likos, A. Lang, M. Watzlawek, H. Löwen (2001) Criterion for determining clustering versus reentrant melting behavior for bounded interaction potentials. Phys. Rev. E 63, p. 031206 (1-9)

    Article  ADS  Google Scholar 

  23. A. A. Louis (2000) Effective potentials for polymers and colloids: beyond the van der Waals picture of fluids? Philos. Trans. R. Soc. Lond. A 359, pp. 939–960

    Article  ADS  Google Scholar 

  24. M. Schmidt (1999) Density-functional theory for soft interactions by dimensional crossover. Phys. Rev. E 60, pp. R6291–R6294

    Article  ADS  Google Scholar 

  25. B. V. Derjaguin, L. D. Landau (1948) Acta Physicochim. USSR 14, 633 (1941); E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam

    Google Scholar 

  26. A. Delville, R. J. M. Pellenq (2000) Electrostatic attraction and/or repulsion between charged colloids : a (NVT) Monte-Carlo study, Molecular Simulation 24, pp. 1–24; R. Messina, C. Holm, K. Kremer (2000) Strong Attraction between Charged Spheres due to Metastable Ionized States. Phys. Rev. Lett. 85, pp. 872–875; T. Terao, T. Nakayama (2001) Charge inversion of colloidal particles in an aqueous solution: Screening by multivalent ions Phys. Rev. E 63, 041401 (1–6); B. Hribar, V. Vlachy (2001) A Monte Carlo Study of Micellar Solutions with a Mixture of Mono- and Trivalent Counterions. Langmuir 17, pp. 2043–2046

    Google Scholar 

  27. A. Delville (1999) (N,V,T) Monte Carlo Simulations of the Electrostatic Interaction between Charged Colloids: Finite Size Effects. J. Phys. Chem. B 103, pp. 8296–8300; A. Delville, P. Levitz (2001) Direct Derivation of the Free Energy of Two Charged Lamellar Colloids from (N,V,T) Monte Carlo Simulations. J. Phys. Chem. B 105, pp. 663–667

    Google Scholar 

  28. H. Löwen, E. Allahyarov (1998) The role of effective triplet interactions in charged colloidal suspensions. J. Phys.: Condensed Matter 10, pp. 4147–4160

    Article  ADS  Google Scholar 

  29. R. D. Groot (1991) Ion condensation on solid particles: Theory and simulations. J. Chem. Phys. 95, pp. 9191–9203

    Article  ADS  Google Scholar 

  30. M. J. Stevens, M. L. Falk, M. O. Robbins (1996) Interactions between charged spherical macroions. J. Chem. Phys. 104, pp. 5209–5219

    Article  ADS  Google Scholar 

  31. H. Löwen, G. Kramposthuber (1993) Optimal effective pair potential for charged colloids. Europhys. Lett. 23, pp. 673–678

    Article  ADS  Google Scholar 

  32. H. Löwen (1994) Interaction between charged rod-like colloidal particles. Phys. Rev. Lett. 72, pp. 424–427; (1994) Charged rod-like colloidal suspensions: an ab initio approach. J. Chem. Phys. 100, pp. 6738–6749

    Google Scholar 

  33. S. Kutter, J. P. Hansen, M. Sprik, E. Boek (2001) Structure and phase behavior of a model clay dispersion: A molecular-dynamics investigation. J. Chem. Phys. 112, pp. 311–322

    Article  ADS  Google Scholar 

  34. T. A. Witten, P. A. Pincus (1986) Colloid Stabilization by Long Grafted Polymers. Macromolecules 19, pp. 2509–2513

    Article  ADS  Google Scholar 

  35. M. Dauod, J. P. Cotton (1982) Star Shaped Polymers: A Model for the Conformation and Its Concentration Dependence. J. Phys. (Paris) 43, pp. 531–538

    Google Scholar 

  36. C. N. Likos, H. Löwen, M. Watzlawek, B. Abbas, O. Jucknischke, J. Allgaier, D. Richter (1998) Star Polymers Viewed as Ultrasoft Colloidal Particles. Phys. Rev. Letters 80, pp. 4450–4453

    Article  ADS  Google Scholar 

  37. A. Jusufi, M. Watzlawek, H. Löwen (1999) Effective Interaction between Star Polymers. Macromolecules 32, pp. 4470–4473

    Article  ADS  Google Scholar 

  38. C. von Ferber, A. Jusufi, C. N. Likos, H. Löwen, M. Watzlawek (2000) Triplet interactions in star polymer solutions. Europhys. Journal E 2, pp. 311–318

    ADS  Google Scholar 

  39. M. Watzlawek, C. N. Likos, H. Löwen (1999) Phase Diagram of Star Polymer Solutions. Phys. Rev. Letters. 82, pp. 5289–5292

    Article  ADS  Google Scholar 

  40. M. Watzlawek, H. Löwen, C. N. Likos (1998) The anomalous structure factor of dense star polymer solutions. J. Phys.: Condensed Matter 10, pp. 8189–8205

    Article  ADS  Google Scholar 

  41. G. A. McConnell, A. P. Gast (1997) Melting of Ordered Arrays and Shape Transitions in Highly Concentrated Diblock Copolymer Solutions. Macromolecules 30, pp. 435–444

    Article  ADS  Google Scholar 

  42. T. P. Lodge, J. Bang, M. J. Park, K. Char (2004) Origin of the Thermoreversible fcc-bcc Transition in Block Copolymer Solutions. Phys. Rev. Lett. 92, p. 145501 (1-4)

    Article  ADS  Google Scholar 

  43. M. Laurati, J. Stellbrink, R. Lund, L. Willner, D. Richter, E. Zaccarelli (2005) Starlike Micelles with Starlike Interactions: A Quantitative Evaluation of Structure Factors and Phase Diagram. Phys. Rev. Lett. 94, p. 195504 (1-4)

    Article  ADS  Google Scholar 

  44. S. T. Milner, T. A. Witten, M. E. Cates (1988) Theory of the Grafted Polymer Brush. Macromolecules 21, pp. 2610–2619

    Article  ADS  Google Scholar 

  45. J. Mewis, W. J. Frith, T. A. Strivens, W. B. Russel (1989) The rheology of suspensions containing polymerically stabilized particles. A. I. Ch. E. J. 35, pp. 415–422

    Google Scholar 

  46. U. Genz, B. D’Aguanno, J. Mewis, R. Klein (1994) Structure of Sterically Stabilized Colloids. Langmuir 10, pp. 2206–2212

    Article  Google Scholar 

  47. C. N. Likos, H. Löwen, A. Poppe, L. Willner, J. Roovers, B. Cubitt, D. Richter (1998) Ordering phenomena of star polymer solutions approaching the o state. Phys. Rev. E 58, pp. 6299–6307

    Article  ADS  Google Scholar 

  48. P. Pincus (1991) Colloid Stabilization with Grafted Polyelectrolytes. Macromolecules 24, pp. 2912–2919

    Article  ADS  Google Scholar 

  49. A. Jusufi, C. N. Likos, H. Löwen (2002) Conformations and Interactions of Star-Branched Polyelectrolytes. Phys. Rev. Letters 88, p. 018301 (1-4)

    Article  ADS  Google Scholar 

  50. S. Asakura, F. Oosawa (1954) On Interaction between Two Bodies Immersed in a Solution of Macromolecules. J. Chem. Phys. 22, pp. 1255–1256

    ADS  Google Scholar 

  51. A. Vrij (1976) Polymers at interfaces and the interactions in colloidal dispersions. Pure Appl. Chem. 48, pp. 471–483

    Article  Google Scholar 

  52. M. Dijkstra, J. M. Brader, R. Evans (1999) Phase behaviour and structure of model colloid-polymer mixtures. J. Phys.: Condensed Matter 11, pp. 10079–10106

    Article  ADS  Google Scholar 

  53. M. Dijkstra, R. van Roij (2002) Entropic Wetting and Many-Body Induced Layering in a Model Colloid-Polymer Mixture. Phys. Rev. Letters 89, p. 208303 (1–4)

    Article  ADS  Google Scholar 

  54. H. N. W. Lekkerkerker, W. C. K. Poon, P. N. Pusey, A. Stroobants, P. B.Warren (1992) Phase behaviour of colloid+polymer mixtures. Europhys. Lett. 20, pp. 559–564

    Article  ADS  Google Scholar 

  55. M. Schmidt, H. Löwen, J. M. Brader, R. Evans (2000) Density Functional for a Model Colloid-Polymer Mixture. Phys. Rev. Letters 85, pp. 1934–1937

    Article  ADS  Google Scholar 

  56. M. Schmidt, H. Löwen, J. M. Brader, R. Evans (2002) Density functional theory for a model colloid-polymer mixture: bulk fluid phases. J. Phys.: Condensed Matter 14, pp. 9353–9382

    Article  ADS  Google Scholar 

  57. A. A. Louis, R. Finken, J. P. Hansen (2000) Crystallization and phase separation in nonadditive binary hard-sphere mixtures. Rev. Phys. E 61, pp. R1028–R1031

    Article  Google Scholar 

  58. E. J. Meijer, D. Frenkel (1995) Computer simulation of colloid-polymer mixtures. Physica A 213, pp. 130–137

    Article  ADS  Google Scholar 

  59. A. Johner, J. F. Joanny, S. Diez Orrite, J. Bonet Avalos (2001) Gelation and phase separation in colloid-polymer mixtures. Europhys. Letters 56, pp. 549–555

    Article  ADS  Google Scholar 

  60. J. Dzubiella, A. Jusufi, C. N. Likos, C. von Ferber, H. Löwen, J. Stellbrink, J. Allgaier, D. Richter, A. B. Schofield, P. A. Smith,W. C. K. Poon, P. N. Pusey (2001) Phase separation in star polymer-colloid mixtures. Phys. Rev. E 64, p. 01040 (1–4)

    Google Scholar 

  61. A. Jusufi, J. Dzubiella, C. N. Likos, C. von Ferber, H. Löwen (2001) Effective interactions between star polymers and colloidal particles. J. Phys.: Condensed Matter 13, pp. 6177–6194

    Article  ADS  Google Scholar 

  62. J. Dzubiella, C. N. Likos, H. Löwen (2002) Star-polymers as depleting agents of colloidal hard spheres. Europhys. Letters. 58, pp. 133–139

    Article  ADS  Google Scholar 

  63. R. L. C. Vink, A. Jusufi, J. Dzubiella, C. N. Likos (2005) Bulk and interfacial properties in colloid-polymer mixtures. Phys. Rev. E 72, p. 030401 (1–4)

    Article  ADS  Google Scholar 

  64. M. Fuchs, K. S. Schweizer (2001) Macromolecular theory of solvation and structure in mixtures of colloids and polymers. Phys. Rev. E 64, p. 021514 (1–19)

    Article  ADS  Google Scholar 

  65. A. Hanke, E. Eisenriegler, S. Dietrich (1999) Polymer depletion effects near mesoscopic particles. Phys. Rev. E 59, pp. 6853–6878

    Article  ADS  Google Scholar 

  66. H. Löwen (2001) Colloidal soft matter under external control. J. Phys.: Condensed Matter 13, pp. R415–R432

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Löwen, H. (2006). Computer Simulation of Colloidal Suspensions. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 2. Lecture Notes in Physics, vol 704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35284-8_7

Download citation

Publish with us

Policies and ethics