Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 704))

Abstract

We review some of the salient features of glass-forming systems. After a brief discussion of the theoretical approaches that are used to describe the slowing down of the dynamics of these system, notably the theory of Adam and Gibbs and the mode-coupling theory of the glass transition, we present some results of computer simulations that have been done to check the validity of these theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Binder and A. P. Young (1986) Spin-glasses – Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, p. 801

    Article  ADS  Google Scholar 

  2. K. H. Fischer and J. A. Hertz (1991) Spin Glasses. Cambridge University Press, Cambridge

    Google Scholar 

  3. J. Zarzycki (Ed.) (1991) Materials Science and Technology. vol. 9 VCH Publ., Weinheim

    Google Scholar 

  4. A. Feltz (1993) Amorphous Inorganic Materials and Glasses. VCH, Weinheim

    Google Scholar 

  5. P. G. Debenedetti (1997) Metastable Liquids. Princeton University Press, Princeton

    Google Scholar 

  6. A. P. Young (Ed.) (1998) Spin Glasses and Random Fields. World Scientific, Singapore

    Google Scholar 

  7. E.-W. Donth (2001) The Glass Transition Relaxation Dynamics in Liquids and Disordered Materials. Springer, Berlin

    Google Scholar 

  8. K. Binder and W. Kob (2005) Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics World Scientific, Singapore

    MATH  Google Scholar 

  9. C. A. Angell, P. H. Poole, and J. Shao (1994) Glass-forming liquids, anomalous liquids, and polyamorphism in liquids and biopolymers. Nuovo Cimento D. 16, p. 993

    Google Scholar 

  10. D. R. Uhlmann (1972) A kinetic treatment of glass formation. J. Non-Cryst. Solids. 7, p. 337

    Article  ADS  Google Scholar 

  11. C. A. Angell (1985) Fast Ion Conductors in Viscous Liquids and Glasses. In Relaxation in Complex Systems, K. L. Ngai and G. B. Wright (eds.). p. 1, US Dept. Commerce, Springfield

    Google Scholar 

  12. K.-U. Hess, D. B. Dingwell, and E. Rössler (1996) Parametrization of viscosity temperature relations of aluminosilicate melts. Chem. Geol. 128, p. 155

    Article  Google Scholar 

  13. E. Rössler, K.-U. Hess, and V. N. Novikov (1998) Universal representation of viscosity in glass forming liquids. J. Non-Cryst. Solids. 223, p. 207

    Article  ADS  Google Scholar 

  14. W. Götze (1989) In Liquids, Freezing and the Glass Transition. Eds.: J. P. Hansen, D. Levesque, and J. Zinn-Justin, Les Houches, Session LI (1991). p. 287, North-Holland, Amsterdam

    Google Scholar 

  15. W. Götze and L. Sjögren (1992) Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, p. 241

    Article  Google Scholar 

  16. W. Götze (1999) Recent tests of the mode-coupling theory for glassy dynamics. J. Phys.: Condens. Matter. 10, p. A1

    Article  Google Scholar 

  17. S. P. Das (2004) Mode-coupling theory and the glass transition in supercooled liquids. Rev. Mod. Phys. 76, p. 785

    Article  ADS  Google Scholar 

  18. J.-P. Hansen and I. R. McDonald (1986) Theory of Simple Liquids. Academic, London

    Google Scholar 

  19. J.-L. Barrat and J.-P. Hansen (2003) Basic Concepts for Simple and Complex Liquids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. E. Courtens, M. Foret, B. Hehlen, and R. Vacher (2001) The vibrational modes of glasses. Solid State Commun. 117, p. 187

    Article  ADS  Google Scholar 

  21. W. Kauzmann (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, p. 219

    Article  Google Scholar 

  22. R. Richert and C. A. Angell (1998) Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy. J. Chem. Phys. 108, p. 9016

    Article  ADS  Google Scholar 

  23. G. Adam and J. H. Gibbs (1965) On temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, p. 139

    Article  ADS  Google Scholar 

  24. J. H. Magill (1967) Physical properties of aromatic hydrocarbons .3. A test of Adam-Gibbs relaxation model for glass formers based on heat-capacity data of 1,3,5-tri-alpha-naphthylbenzene. J. Chem. Phys. 47, p. 2802

    Article  ADS  Google Scholar 

  25. C. Alba, L. E. Busse, D. J. List, and C. A. Angell (1990) Thermodynamic aspects of the vitrification of toluene, and xylene isomers, and the fragility of liquid hydrocarbons. J. Chem. Phys. 92, p. 617

    Article  ADS  Google Scholar 

  26. C. A. Angell (1997) Entropy and fragility in supercooling liquids. J. Res. NIST. 102, p. 171

    Google Scholar 

  27. H. Tanaka (2003) Relation between thermodynamics and kinetics of glassforming liquids. Phys. Rev. Lett. 90, 055701

    Article  ADS  Google Scholar 

  28. R. Zwanzig (1960) Ensemble method in the theory of irreversibility. J. Chem. Phys. 33, p. 1338

    Article  MathSciNet  ADS  Google Scholar 

  29. H. Mori (1965) Transport collective motion and brownian motion. Prog. Theor. Phys. 33, p. 423

    Article  MATH  ADS  Google Scholar 

  30. U. Balucani and M. Zoppi (1994) Dynamics of the Liquid State. Oxford University Press, Oxford

    Google Scholar 

  31. U. Balucani, M. H. Lee, and V. Tognetti (2003) Dynamical correlations. Phys. Rep. 373, p. 409

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. K. Hukushima and K. Nemoto (1996) Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Japan, 65, p. 1604

    Google Scholar 

  33. R. Yamamoto and W. Kob (2000) Replica-exchange molecular dynamics simulation for supercooled liquids. Phys. Rev. E. 61, p. 5473.

    Article  ADS  Google Scholar 

  34. W. Kob and H. C. Andersen (1994) Scaling Behavior in the ß-Relaxation Regime of a Supercooled Lennard-Jones Mixture. Phys. Rev. Lett. 73, p. 1376

    Article  ADS  Google Scholar 

  35. W. Kob and H. C. Andersen (1995) Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture: The van Hove correlation function. Phys. Rev. E. 51, p. 4626

    Article  ADS  Google Scholar 

  36. W. Kob and H. C. Andersen (1995) Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture II: Intermediate scattering function and Dynamic Susceptibility. Phys. Rev. E. 52, p. 4134

    Article  ADS  Google Scholar 

  37. W. Kob (1999) Computer Simulations of Supercooled Liquids and Glasses. J. Phys.: Condens. Matter. 11, p. R85

    Article  ADS  Google Scholar 

  38. T. Gleim (1998) Ph.D. Thesis. (Johannes Gutenberg Universität Mainz)

    Google Scholar 

  39. H. Sillescu (1999) Heterogeneity at the glass transition: a review. J. Non-Cryst. Solids. 243, p. 81

    Article  ADS  Google Scholar 

  40. M. D. Ediger (2000) Spatially heterogeneous dynamics in supercooled liquids. Ann. Rev. Phys. Chem. 51, p. 99

    Article  ADS  Google Scholar 

  41. R. Richert (2002) Heterogeneous dynamics in liquids: fluctuations in space and time. J. Phys.: Condens. Matter. 14, p. R703

    Article  ADS  Google Scholar 

  42. R. K. Pathria (1986) Statistical Mechanics. Pergamon Press, Oxford

    Google Scholar 

  43. T. Gleim, W. Kob, and K. Binder (1998) How does the relaxation of a supercooled liquid depend on its microscopic dynamics? Phys. Rev. Lett. 81, p. 4404

    Article  ADS  Google Scholar 

  44. G. Szamel and E. Flenner (2004) Independence of the relaxation of a supercooled fluid from its microscopic dynamics: Need for yet another extension of the modecoupling theory. Europhys. Lett. 67, p. 779

    Article  ADS  Google Scholar 

  45. J.-L. Barrat, W. Götze, and A. Latz (1989) The liquid glass-transition of the hard-sphere system. J. Phys.: Condens. Matter. 1, p. 7163

    Article  ADS  Google Scholar 

  46. W. Götze and L. Sjögren (1991) Beta-relaxation at the glass-transition of hard spherical colloids. Phys. Rev. A. 43, p. 5442

    Article  Google Scholar 

  47. M. Nauroth and W. Kob (1997) A quantitative test of the mode-coupling theory of the ideal glass transition for a binary Lennard-Jones system. Phys. Rev. E. 55, p. 657

    Article  ADS  Google Scholar 

  48. F. Sciortino and W. Kob (2001) The Debye-Waller factor of liquid silica: Theory and simulation. Phys. Rev. Lett. 86, p. 648

    Article  ADS  Google Scholar 

  49. W. Kob, M. Nauroth, and F. Sciortino (2002) Quantitative tests of modecoupling theory for fragile and strong glass-formers. J. Non-Cryst. Solids. 307– 310, p. 181

    Article  Google Scholar 

  50. W. Götze and L. Sjögren (1987) The glass-transition singularity. Z. Phys. B. 65, p. 415

    Article  Google Scholar 

  51. L. Sjögren (1990) Temperature-dependence of viscosity near the glass-transition. Z. Phys. B. 79, p. 5

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kob, W. (2006). Computer Simulations of Supercooled Liquids. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 2. Lecture Notes in Physics, vol 704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35284-8_1

Download citation

Publish with us

Policies and ethics