Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 703))

Abstract

Density functional theory DFT Kohn-Sham [16] is the method of choice for the calculation of electronic properties of large systems. This is due to the combination of accuracy and efficiency that has been achieved for the Kohn– Sham (KS) method in DFT [19]. DFT based electronic structure calculations are nowadays routinely used by chemists and physicists to support their research. Increasingly complex systems can be treated and the inclusion of environmental effects, through implicit or explicit solvent treatments, as well as the effects of different thermodynamic parameters (temperature, pressure) through first–principles molecular dynamics, opens the door for simulations close to experimental conditions. The accuracy of the method is such that many properties of systems of interest to chemistry, physics, material science, and biology can be predicted in a parameter free way. The success of the KS method makes it also the favorite framework for new developments to improve both, accuracy and efficiency. Better accuracy in this context can be achieved along two lines. On one hand the numerical limit of a given model should be reached and on the other hand more accurate models should be developed (i.e. exchange-correlation functional in DFT). The development of new functionals is an art on its own and will not concern us here. However, it is intimately related to the efficiency problem, as only numerically accurate tests on more and more complex systems can give unambiguous information on the performance of new functionals. The goal of improved algorithms is therefore, to provide methods to accurately and efficiently solve the KS equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. EMSL Gaussian Basis Set Order Form. http://www.emsl.pnl.gov/forms/basisform.html

    Google Scholar 

  2. A. D. Becke (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 38(6), pp. 3098–3100

    Article  ADS  Google Scholar 

  3. A. D. Becke (1988) A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 88(4), pp. 2547–2553

    Article  ADS  Google Scholar 

  4. H. M. Berman, W. K. Olson, D. L. Beveridge, J. Westbrook, A. Gelbin, T. Demeny, S.-H. Hsieh, A. R. Srinivasan, and B. Schneider (1992) The nucleic acid database: A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63, pp. 751–759

    Article  ADS  Google Scholar 

  5. P. Blöchl (1994) Projector augmented-wave method. Phys. Rev. B 50(24), pp. 17953–17979

    Article  ADS  Google Scholar 

  6. CPMD, Version 3.9. copyright IBM Corp. 1990–2004, copyright MPI für Festkörperforschung Stuttgart 1997-2001; http://www.cpmd.org/

    Google Scholar 

  7. R. M. Dickson and A. D. Becke (1993) Basis-set-free local density-functional calculations of geometries of polyatomic-molecules. J. Chem. Phys. 99(5), pp. 3898–3905

    Article  ADS  Google Scholar 

  8. B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin (1979) On first-row diatomic molecules and local density models. J. Chem. Phys. 71(12), pp. 4993–4999

    Article  ADS  Google Scholar 

  9. T. H. Dunning (1989) Gaussian-basis sets for use in correlated molecular calculations .1. the atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), pp. 1007–1023

    Article  ADS  Google Scholar 

  10. K. Eichorn, O. Treutler, H. Öhm, M. Häser, and R. Ahlrichs (1995) Auxiliary basis sets to approximate coulomb potentials. Chem. Phys. Lett. 240, pp. 283–290

    Article  ADS  Google Scholar 

  11. S. Goedecker (1999) Linear scaling electronic structure methods. Rev. Mod. Phys. 71(4), pp. 1085–1123

    Article  ADS  Google Scholar 

  12. S. Goedecker, M. Teter, and J. Hutter (1996) Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54(3), pp. 1703–1710

    Article  ADS  Google Scholar 

  13. C. Hartwigsen, S. Goedecker, and J. Hutter (1998) Relativistic separable dualspace Gaussian pseudopotentials from H to rn. Phys. Rev. B 58(7), pp. 3641–3662

    Article  ADS  Google Scholar 

  14. T. Helgaker, P. Jørgensen, and J. Olsen (2000) Molecular Electronic-Structure Theory. John Wiley & Sons, Ltd, Chichester

    Google Scholar 

  15. T. Helgaker and P. R. Taylor (1995) Modern Electronic Structure Theory, Part II. World Scientific, Singapore

    Google Scholar 

  16. P. Hohenberg and W. Kohn (1964) Inhomogeneous electron gas. Phys. Rev. B 136(3B), pp. B864–B871

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Hura, D. Russo, R. M. Glaeser, T. Head-Gordon, M. Krack, and M. Parrinello (2003) Water structure as a function of temperature from x-ray scattering experiments and ab initio molecular dynamics. Phys. Chem. Chem. Phys. 5, pp. 1981–1991

    Article  Google Scholar 

  18. M. Iannuzzi, T. Chassaing, T. Wallman, and J. Hutter (2005) Ground and excited state density functional calculations with Gaussian and augmented method. Chimia, 59, pp. 499–503

    Article  Google Scholar 

  19. W. Kohn and L. J. Sham (1965) Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), pp. A1133–A1139

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Krack and A. M. Köster (1998) An adaptive numerical integrator for molecular integrals. J. Chem. Phys. 8(108), pp. 3226–3234

    Article  ADS  Google Scholar 

  21. M. Krack and M. Parrinello (2000) All-electron ab-initio molecular dynamics. Phys. Chem. Chem. Phys. 2(10), pp. 2105–2112

    Article  Google Scholar 

  22. I.-F. W. Kuo and C. J. Mundy (2004) An ab initio molecular dynamics study of the aqueous liquid-vapor interface. Science 303, pp. 658–660

    Article  ADS  Google Scholar 

  23. I.-F. W. Kuo, C. J. Mundy, M. J. McGrath, J. I. Siepmann, J. VandeVondele, M. Sprik, J. Hutter, B. Chen, M. L. Klein, F. Mohamed, M. Krack, and M. Parrinello (2004) Liquid water from first principles: Investigation of different sampling approaches. J. Phys. Chem. B 108(34), pp. 12990–12998

    Article  Google Scholar 

  24. V. I. Lebedev (1977) Spherical quadrature formulas exact to order-25-order-29. Siberian Mathematical Journal 18(1), pp. 99–107

    Article  MATH  Google Scholar 

  25. C. T. Lee, W. T. Yang, and R. G. Parr (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 37(2), pp. 785–789

    Article  ADS  Google Scholar 

  26. G. Lippert, J. Hutter, and M. Parrinello (1997) A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 92(3), pp. 477–487

    Article  ADS  Google Scholar 

  27. G. Lippert, J. Hutter, and M. Parrinello (1999) The Gaussian and augmentedplane- wave density functional method for ab initio molecular dynamics simulations. Theor. Chem. Acc. 103(2), pp. 124–140

    Google Scholar 

  28. D. Marx and J. Hutter. ab-initio Molecular Dynamics: Theory and Implementation. In J. Grotendorst, editor, Modern Methods and Algorithms of Quantum Chemistry, volume 1 of NIC Series, pages 329–477. FZ Jülich, Germany, 2000. see also http://www.fz-juelich.de/nic-series/Volume1/

    Google Scholar 

  29. B. Miehlich, A. Savin, H. Stoll, and H. Preuss (1989) Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 157(3), pp. 200–206

    Article  ADS  Google Scholar 

  30. S. Obara and A. Saika (1986) Efficient recursive computation of molecular integrals over cartesian gaussian functions. J. Chem. Phys. 84(7), pp. 3963–3974

    Article  ADS  Google Scholar 

  31. R. Parthasarathy, M. Malik, and S. M. Fridey (1982) X–ray structure of a dinucleoside monophosphate a2’p5’c that contains a 2’–5’ link found in (2’- 5’)oligo(a)s induced by interferons: Single-stranded helical conformation of 2’–5’–linked oligonucleotides. Proc. Natl. Acad. Sci. USA 79, pp. 7292–7296

    Article  ADS  Google Scholar 

  32. The CP2K developers group. http://cp2k.berlios.de/, 2004

    Google Scholar 

  33. J. VandeVondele and J. Hutter (2003) An Efficient orbital transformation method for electronic structure calculations. J. Chem. Phys. 118(10), pp. 4365–4369

    Article  ADS  Google Scholar 

  34. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter (2005) Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach. Comp. Phys. Comm. 167, pp. 103–128

    Article  ADS  Google Scholar 

  35. J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, and M. Parrinello (2005) The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water. J. Chem. Phys. 122, p. 014515

    Article  ADS  Google Scholar 

  36. E. T. Whittaker and G. N. Watson (1990) A Course in Modern Analysis, 4th ed. Cambridge University Press

    Google Scholar 

  37. J. L. Whitten (1973) Coulombic potential energy integrals and approximations. J. Chem. Phys. 58(10), pp. 4496–4501

    Article  ADS  Google Scholar 

  38. D. E. Woon and T. H. Dunning (1993) Gaussian-basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98(2), pp. 1358–1371

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

VandeVondele, J., Iannuzzi, M., Hutter, J. (2006). Large Scale Condensed Matter Calculations using the Gaussian and Augmented Plane Waves Method. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1. Lecture Notes in Physics, vol 703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35273-2_8

Download citation

Publish with us

Policies and ethics