Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 703))

Abstract

The study of phase transitions has played a central role in the study of condensed matter. Since the first applications of molecular simulations, which provided some of the first evidence in support of a freezing transition in hardsphere systems, to contemporary research on complex systems, including polymers, proteins, or liquid crystals, to name a few, molecular simulations are increasingly providing a standard against which to measure the validity of theoretical predictions or phenomenological explanations of experimentally observed phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Z. Panagiotopoulos (1992) Direct determination of fluid-phase equilibria by simulation in the gibbs ensemble – A review. Molecular Simulation. 9, pp. 1–23

    Article  Google Scholar 

  2. A. M. Ferrenberg and R. H. Swendsen (1988) New Monte-Carlo technique for studying phase-transitions. Phys. Rev. Lett. 61, pp. 2635–2638

    Article  ADS  Google Scholar 

  3. A. M. Ferrenberg and R. H. Swendsen (1989) Optimized Monte-Carlo data-analysis. Phys. Rev. Lett. 63, pp. 1195–1198

    Article  ADS  Google Scholar 

  4. B. A. Berg and T. Neuhaus (1992) Multicanonical ensemble – a new approach to simulate 1st-order phase-transitions. Phys. Rev. Lett. 68, pp. 9–12

    Article  ADS  Google Scholar 

  5. B. A. Berg and T. Neuhaus (1991) Multicanonical algorithms for 1st order phase-transitions. Phys. Lett. B 267, pp. 249–253

    Article  ADS  Google Scholar 

  6. J. Lee (1993) New Monte-Carlo algorithm – entropic sampling. Phys. Rev. Lett. 71, pp. 211–214

    Article  ADS  Google Scholar 

  7. F. G. Wang and D. P. Landau (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, pp. 2050–2053

    Article  ADS  Google Scholar 

  8. Q. L. Yan, R. Faller, and J. J. de Pablo (2002) Density-of-states Monte Carlo method for simulation of fluids. J. Chem. Phys. 116, pp. 8745–8749

    Article  ADS  Google Scholar 

  9. A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N. Vorontsovvelyaminov (1992) New approach to Monte-Carlo calculation of the free-energy – method of expanded ensembles. J. Chem. Phys. 96, pp. 1776–1783

    Article  ADS  Google Scholar 

  10. B. A. Berg (2003) Multicanonical simulations step by step. Comp. Phys. Comm. 153, pp. 397–406; ibid. (2004) Markov Chain Monte Carlo Simulations and their Statistical Analysis. World Scientific P. 380

    Google Scholar 

  11. P. M. C. de Oliveira, T. J. P. Penna, and H. J. Herrmann (1996) Broad Histogram Method. Braz. J. Phys. 26, pp. 677–683

    Google Scholar 

  12. O. Engkvist and G. Karlstrom (1996) A method to calculate the probability distribution for systems with large energy barriers. Chem. Phys. 213, pp. 63–76

    Article  Google Scholar 

  13. N. Rathore and J. J. de Pablo (2002) Monte Carlo simulation of proteins through a random walk in energy space. J. Chem. Phys. 116, pp. 7225–7230

    Article  ADS  Google Scholar 

  14. N. Rathore, T. A. Knotts, and J. J. de Pablo (2003) Configurational temperature density of states simulations of proteins. Biophys. J. 85, pp. 3963–3968

    Article  Google Scholar 

  15. T. S. Jain and J. J. de Pablo (2002) A biased Monte Carlo technique for calculation of the density of states of polymer fllms. J. Chem. Phys. 116, pp. 7238–7243

    Article  ADS  Google Scholar 

  16. T. S. Jain and J. J. de Pablo (2003) Calculation of interfacial tension from density of states. J. Chem. Phys. 118, pp. 4226–4229

    Article  ADS  Google Scholar 

  17. Q. Yan and J. J. de Pablo (2003) Fast calculation of the density of states of a fluid by Monte Carlo simulations. Phys. Rev. Lett. 90, 035701

    Article  ADS  Google Scholar 

  18. N. Rathore, T. A. Knotts, and J. J. de Pablo (2003) Configurational temperature density of states simulations of proteins. Biophys. J. 85, pp. 3963–3968

    Article  Google Scholar 

  19. D. A. McQuarrie (1976) Statistical Mechanics. HarperCollins Publishers Inc., New York

    Google Scholar 

  20. O. G. Jepps, O. Ayton, and D. J. Evans (2000) Microscopic expressions for the thermodynamic temperature. Phys. Rev. E. 62, pp. 4757–4763

    Article  ADS  Google Scholar 

  21. B. D. Butler, G. Ayton, O. G. Jepps, and D. J. Evans (1998) Configurational temperature: Verification of Monte Carlo simulations. J. Chem. Phys. 109, pp. 6519–6522

    Article  ADS  Google Scholar 

  22. J. R. Ray (1991) Microcanonical ensemble Monte-Carlo method. Phys. Rev. A 44, pp. 4061–4064

    Article  ADS  Google Scholar 

  23. R. Lustig (1998) Microcanonical Monte Carlo simulation of thermodynamic properties. J. Chem. Phys. 109, pp. 8816–8828

    Article  ADS  Google Scholar 

  24. P. Dayal, S. Trebst, S. Wessel, D. Wurtz, M. Troyer, S. Sabhapandit, and S. N. Coppersmith (2004) Performance limitations of flat-histogram methods. Phys. Rev. Lett. 92, 097201

    Article  ADS  Google Scholar 

  25. T. Lazaridis and M. Karplus (1999) Effective energy function for proteins in solution. Proteins 35, pp. 133–152

    Article  Google Scholar 

  26. P. Ferrara, J. Apostolakiz, and A. Caflisch (2002) Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins 46, pp. 24–33

    Article  Google Scholar 

  27. Q. L. Yan and J. J. de Pablo (1999) Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model. J. Chem. Phys. 111, pp. 9509–9515

    Article  ADS  Google Scholar 

  28. E. B. Kim, R. Faller, Q. Yan, N. L. Abbott, and J. J. de Pablo (2002) Potential of mean force between a spherical particle suspended in a nematic liquid crystal and a substrate. J. Chem. Phys. 117, pp. 7781–7787

    Article  ADS  Google Scholar 

  29. N. Rathore, Q. L. Yan and J. J. de Pablo (2004) Molecular simulation of the reversible mechanical unfolding of proteins. J. Chem. Phys. 120, pp. 5781–5788

    Article  ADS  Google Scholar 

  30. M. Doxastakis, Y. L. Chen, and J. J. de Pablo (2005) Potential of mean force between two nanometer-scale particles in a polymer solution. J. Chem. Phys. 123, 034901

    Article  ADS  Google Scholar 

  31. T. A. Knotts, N. Rathore, and J. J. de Pablo (2005) Structure and stability of a model three-helix-bundle protein on tailored surfaces. Proteins-Structure Function and bioinformatics 61, pp. 385–397

    Article  Google Scholar 

  32. N. Rathore, Q. L. Yan, and J. J. de Pablo (2004) Molecular simulation of the reversible mechanical unfolding of proteins. J. Chem. Phys. 120, pp. 5781–5788

    Article  ADS  Google Scholar 

  33. M. Chopra, M. Müller, and J. J. de Pablo (2006) Order-parameter-based Monte Carlo simulation of crystallization. J. Chem. Phys. 124 p. 134102

    Article  ADS  Google Scholar 

  34. J. Valleau (1999) Thermodynamic-scaling methods in Monte Carlo and their application to phase equilibria. Adv. Chem. Phys. 105, pp. 369–404

    Article  Google Scholar 

  35. P. Virnau and M. Müller (2004) Calculation of free energy through successive umbrella sampling. J. Chem. Phys. 120, pp. 10925–10930

    Article  ADS  Google Scholar 

  36. B. J. Schulz, K. Binder, M. Müller, and D. P. Landau (2003) Avoiding boundary effects in Wang-Landau sampling. Phys. Rev. E 67, 067102

    Article  ADS  Google Scholar 

  37. Certainly, restricting the window size limits order parameter fluctuations to far less than those explored in a grandcanonical simulation and each subsimulations resembles more closely a simulation in the canonical ensemble than in the grandcanonical ensemble.We emphasize, however, that local density (order parameter) fluctuations are not restricted and that, ideally, configurations with a fixed order parameter have identical statistical weight in the canonical ensemble, in the ensemble used in our simulation and in the grandcanonical ensemble.

    Google Scholar 

  38. D. Chandler (1987) Introduction to Modern Statistical Mechanics. Oxford University Press, New York

    Google Scholar 

  39. D. Frenkel and B. Smith (1996) Understanding Molecular Simulation. Academic, Boston

    MATH  Google Scholar 

  40. P. Virnau, M. Müller, L. G. MacDowell, and K. Binder (2004) Phase behavior of n-alkanes in supercritical solution: A Monte Carlo study. J. Chem. Phys. 121, pp. 2169–2179

    Article  ADS  Google Scholar 

  41. K. Binder, M. Müller, P. Virnau, and L. G. MacDowell (2005) Polymer plus solvent systems: Phase diagrams, interface free energies, and nucleation. Adv. Polym. Sci. 173, pp. 1–104

    Google Scholar 

  42. R. L. C. Vink and J. Horbach (2004) Grand canonical Monte Carlo simulation of a model colloid-polymer mixture: Coexistence line, critical behavior, and interfacial tension. J. Chem. Phys. 121, pp. 3253–3258

    Article  ADS  Google Scholar 

  43. R. L. C. Vink, J. Horbach, and K. Binder (2005) Capillary waves in a colloid polymer interface. J. Chem. Phys. 122, p. 134905

    Article  ADS  Google Scholar 

  44. R. L. C. Vink, J. Horbach, and K. Binder (2005) Critical phenomena in colloid polymer mixtures: Interfacial tension, order parameter, susceptibility, and coexistence diameter. Phys. Rev. E 71, 011401

    Article  ADS  Google Scholar 

  45. R. L. C. Vink, M. Schmidt (2005) Simulation and theory of fluid demixing and interfacial tension of mixtures of colloids and nonideal polymers. Phys. Rev. E 71, 051406

    Article  ADS  Google Scholar 

  46. R. L. C. Vink, and T. Schilling (2005) Interfacial tension of the isotropicnematic interface in suspensions of soft spherocylinders. Phys. Rev. E 71, 051716

    Article  ADS  Google Scholar 

  47. R. L. C. Vink, S. Wolfsheimer, and T. Schilling (2005) Isotropic-nematic interfacial tension of hard and soft rods: Application of advanced grand canonical biased-sampling techniques. J. Chem. Phys. 123, 074901

    Article  ADS  Google Scholar 

  48. J. E. Mayer and W. W. Wood (1965) Interfacial Tension effects in Finite, Periodic, Two-Dimensional Systems. J. Chem. Phys. 42, pp. 4268–4274

    Article  ADS  Google Scholar 

  49. K. Binder and M. H. Kalos (1980) Critical clusters in a supersaturated vapor - theory and Monte-Carlo simulation. J. Stat. Phys. 22, pp. 363–396

    Article  ADS  Google Scholar 

  50. H. Furukawa and K. Binder (1982) 2-phase equilibria and nucleation barriers near a critical-point. Phys. Rev. A 26, pp. 556–566

    Article  ADS  Google Scholar 

  51. B. A. Berg, U. Hansmann, and T. Neuhaus (1993) Properties of interfaces in the 2 and 3-dimensional ising-model. Z. Phys. B 90, pp. 229–239

    Article  ADS  Google Scholar 

  52. J. E. Hunter and W. P. Reinhardt (1995) Finite-size-scaling behavior of the free-energy barrier between coexisting phases – determination of the critical temperature and interfacial-tension of the Lennard-Jones fluid. J. Chem. Phys. 103, pp. 8627–8637

    Article  ADS  Google Scholar 

  53. M. Biskup, L. Chyes, and R. Kotecky (2002) On the formation/dissolution of equilibrium droplets. Europhys. Lett. 60, pp. 21–27

    Article  ADS  Google Scholar 

  54. K. Binder (2003) Theory of the evaporation /condensation transition of equilibrium droplets in finite volumes. Physica A 319, pp. 99–114

    Google Scholar 

  55. L. G. MacDowell, P. Virnau, M. Müller, and K. Binder (2004) The evaporation/ condensation transition of liquid droplets. J. Chem. Phys. 120, pp. 5293–5308

    Article  ADS  Google Scholar 

  56. Generally, the density of the liquid inside the drop will also deviate from the coexistence density of the liquid. Since the compressibility of the liquid phase, however, is much smaller than that of the vapor the deviation of the density inside the drop from the coexistence value will be much smaller than the deviation in the vapor phase.

    Google Scholar 

  57. F. H. Stillinger Jr. (1963) Rigorous Basis of the Frenkel-Band Theory of Association Equilibrium. J. Chem. Phys. 38, pp. 1486–1494

    Article  ADS  Google Scholar 

  58. T. Neuhaus and J. S. Hager (2003) 2D crystal shapes, droplet condensation, and exponential slowing down in simulations of first-order phase transitions. J. Stat. Phys. 113, pp. 47–83

    Article  MATH  Google Scholar 

  59. K. Leung and R. K. P. Zia (1990) Geometrically induced transitions between equilibrium crystal shapes. J. Phys. A 23, pp. 4593–4602

    Google Scholar 

  60. L. G. MacDowell, M. Müller, C. Vega, and K. Binder (2000) Equation of state and critical behavior of polymer models: A quantitative comparison between Wertheim’s thermodynamic perturbation theory and computer simulations. J. Chem. Phys. 113, pp. 419–433

    Article  ADS  Google Scholar 

  61. J. I. Siepmann (1990) A method for the direct calculation of chemical-potentials for dense chain systems. Mol. Phys., 70, pp. 1145–1158; D. Frenkel, G. C. A. M. Mooij, and B. Smit (1992) Novel scheme to study structural and thermal properties of continuously deformable molecules. J. Phys. Condens. Matter 4, pp. 3053–3076; M. Laso, J. J. dePablo, U. W. Suter (1992) Simulation of phase-equilibria for chain molecules. J. Chem. Phys. 97, pp. 2817–2819

    Google Scholar 

  62. M. Müller and L. G. MacDowell (2000) Interface and surface properties of short polymers in solution: Monte Carlo simulations and self-consistent field theory. Macromolecules 33, pp. 3902–3923

    Article  ADS  Google Scholar 

  63. C. Borgs and R. Kotecky (1990) A rigorous theory of finite-size scaling at 1st-order phase-transitions. J. Stat. Phys. 61, pp. 79–119; ibid. (1992) Finite size effects at asymmetric 1st-order phase-transitions. Phys. Rev. Lett. 68, pp. 1734–1737

    Google Scholar 

  64. A. Sariban and K. Binder (1988) Phase-Separation of polymer mixtures in the presence of solvent. Macromolecules 21, pp. 711–726; ibid. (1991) Spinodal decomposition of polymer mixtures – a Monte-Carlo simulation. 24, pp. 578–592; ibid. (1987) Critical properties of the Flory-Huggins lattice model of polymer mixtures. J. Chem. Phys. 86, pp. 5859–5873; ibid. (1988) Interaction effects on linear dimensions of polymer-chains in polymer mixtures. Makromol. Chem. 189, pp. 2357–2365

    Google Scholar 

  65. M. Müller (1999) Miscibility behavior and single chain properties in polymer blends: a bond fluctuation model study. Macromol. Theory Simul. 8, pp. 343–374; M. Müller and K. Binder (1995) Computer-simulation of asymmetric polymer mixtures. Macromolecules 28, pp. 1825–1834; ibid. (1994) An algorithm for the semi-grand-canonical simulation of asymmetric polymer mixtures. Computer Phys. Comm. 84, pp. 173–185

    Google Scholar 

  66. R. D. Kaminski (1994) Monte-Carlo evaluation of ensemble averages involving particle number variations in dense fluid systems. J. Chem. Phys. 101, pp. 4986–4994

    Article  ADS  Google Scholar 

  67. I. Carmesin and K. Kremer (1988) The bond fluctuation method – a new e.ective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules 21, pp. 2819–2823; H.-P. Deutsch and K. Binder (1991) Interdiffusion and self-diffusion in polymer mixtures – a monte-carlo study. J. Chem. Phys. 94, pp. 2294–2304

    Google Scholar 

  68. M. L. Huggins (1941) Solutions of Long Chain Compounds. J. Chem. Phys. 9, p. 440; P. J. Flory (1941) Thermodynamics of High Polymer Solutions. J. Chem. Phys. 9, pp. 660–661

    Google Scholar 

  69. K. S. Schweizer and J. G. Curro (1997) Integral equation theories of the structure, thermodynamics, and phase transitions of polymer fluids. Adv. Chem. Phys. 98, pp. 1–142.

    Article  Google Scholar 

  70. K. W. Foreman and K. F. Freed (1998) Lattice cluster theory of multicomponent polymer systems: Chain semiflexibility and specific interactions. Advances in Chemical Physics 103, pp. 335–390; K. F. Freed and J. Dudowicz (1998) Lattice cluster theory for pedestrians: The incompressible limit and the miscibility of polyolefin blends. Macromolecules 31, pp. 6681–6690

    Google Scholar 

  71. E. Helfand and Y. Tagami (1972) Theory of interface between immiscible polymers .2. J. Chem. Phys. 56, p. 3592; E. Helfand (1975) Theory of inhomogeneous polymers – fundamentals of Gaussian random-walk model. J. Chem. Phys. 62, pp. 999–1005

    Google Scholar 

  72. K. M. Hong and J. Noolandi (1981) Theory of inhomogeneous multicomponent polymer systems. Macromolecules 14, pp. 727–736; ibid., (1982) Interfacial properties of immiscible homopolymer blends in the presence of block copolymers. 15, pp. 482–492

    Google Scholar 

  73. K. R. Shull (1993) Interfacial phase-transitions in block copolymer homopolymer blends. Macromolecules 26, pp. 2346–2360

    Article  ADS  Google Scholar 

  74. J. M. H. M. Scheutjens and G. J. Fleer (1979) Statistical-theory of the adsorption of interacting chain molecules .1. Partition-function, segment density distribution, and adsorption-isotherms. J. Phys. Chem. 83, pp. 1619–1635; ibid. (1980) Statistical-theory of the adsorption of interacting chain molecules .2. Train, loop, and tail size distribution. 84, pp. 178–190; ibid. (1985) Interaction between 2 adsorbed polymer layers. Macromolecules 18, pp. 1882–1900

    Google Scholar 

  75. M. W. Matsen (1995) Stabilizing new morphologies by blending homopolymer with block-copolymer. Phys. Rev. Lett. 74, pp. 4225–4228

    Article  ADS  Google Scholar 

  76. G. H. Fredrickson, V. Ganesan, and F. Drolet (2002) Field-theoretic computer simulation methods for polymers and complex fluids. Macromolecules 35, pp. 16–39

    Article  ADS  Google Scholar 

  77. M. Müller and F. Schmid (2005) Incorporating fluctuations and dynamics in self-consistent field theories for polymer blends. Adv. Polym. Sci. 185, pp. 1–58

    Article  Google Scholar 

  78. M. Müller (2005) Monte Carlo Simulations of Binary Polymer Liquids. In Molecular Simulation Methods for Predicting Polymer Properties, V. Galiatsatos (ed), pp. 95–152, Wiley Hoboken, NJ.

    Google Scholar 

  79. F. S. Bates, M. F. Schultz, J. H. Rosedale, and K. Almdal (1992) Order and Disorder in symmetrical diblock copolymer melts. Macromolecules 25, p. 5547; M. D. Gehlsen and F. S. Bates (1994) Macromolecules 27, p. 3611; F. S. Bates and G. H. Fredrickson (1994) Macromolecules 27, p. 1065

    Google Scholar 

  80. D. Schwahn, G. Meier, K. Mortensen, and S. Janssen (1994) On the N-scaling of the ginzburg number and the critical amplitudes in various compatible polymer blends. J. Phys. II (France) 4, pp. 837–848; H. Frielinghaus, D. Schwahn, L. Willner, and T. Springer (1997) Thermal composition fluctuations in binary homopolymer mixtures as a function of pressure and temperature. Physica B 241, pp. 1022–1024

    Google Scholar 

  81. P. Van Konynenburg and R. L. Scott (1980) Critical lines and phase-equilibria in binary vanderwaals mixtures. Philos. Trans. Soc. London Series A 298, pp. 495–540

    Article  ADS  Google Scholar 

  82. H. A. Lorentz (1881) Annalen Phys. 12, p. 127

    Article  ADS  MathSciNet  Google Scholar 

  83. D. C. Berthelot (1898) r. hebd. Seanc. Acad Sci. Paris 126, p. 1703

    Google Scholar 

  84. G. Schneider, Z. Alwani, W. Heim, E. Horvath, and E. U. Franck (1967) Phase equilibria and critical phenomena in binary mixtures (CO2 with N-octane Nundecane N-tridecane and N-hexadecane up to 1500 bar). Chem. Ing. Techn. 39, p. 649

    Article  Google Scholar 

  85. T. Charoensombut-Amon, R. J. Martin, and R. Kobayashi (1986) Application of a generalized multiproperty apparatus to measure phase-equilibrium and vapor-phase densities of supercritical carbon-dioxide in normal-hexadecane systems up to 26 mpa. Fluid Phase Equilibria 31, pp. 89–104

    Article  Google Scholar 

  86. C. Menduina, C. McBride, and C. Vega (2001) Correctly averaged Non-Gaussian theory of rubber-like elasticity – application to the description of the behavior of poly(dimethylsiloxane) bimodal networks. Phys. Chem. Chem. Phys. 3, p. 1289

    Article  Google Scholar 

  87. P. G. de Gennes and J. Prost (1993) The Physics of Liquid Crystals. Clarendon Press, Oxford

    Google Scholar 

  88. L. Leibler (1980) Theory of microphase separation in block co-polymers. Macromolecules 13, pp. 1602–1617

    Article  ADS  Google Scholar 

  89. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti (1983) Bond-orientational order in liquids and glasses. Phys. Rev. B 28, pp. 784–805

    Article  ADS  Google Scholar 

  90. L. D. Landau and E. M. Lifshitz (1980) Statistical Physics, 3rd, Pergamon, London

    Google Scholar 

  91. K. Binder (1982) Monte-Carlo calculation of the surface-tension for twodimensional and 3-dimensional lattice-gas models. Phys. Rev. A 25, pp. 1699–1709

    Article  ADS  Google Scholar 

  92. P. R. Ten Wolde, M. J. Ruiz-Montero, and D. Frenkel (1995) Numerical evidence for BCC ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, pp. 2714–2717

    Article  ADS  Google Scholar 

  93. M. J. Mandell, J. P. McTaque, and A. Rahman (1976) Crystal nucleation in a 3-dimensional lennard-jones system – molecular-dynamics study. J. Chem. Phys. 64, pp. 3699–3702

    Article  ADS  Google Scholar 

  94. C. S. Hsu and A. Rahman (1979) Crystal nucleation and growth in liquid rubidium. J. Chem. Phys. 71, p. 4974

    Article  ADS  Google Scholar 

  95. W. C. Swope and H. C. Andersen (1990) 10(6)-Particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid. Phys. Rev. B 41, pp. 7042–7054

    Article  ADS  Google Scholar 

  96. J. S. van Duijneveldt and D. Frenkel (1992) Computer-simulation study of free-energy barriers in crystal nucleation. J. Chem. Phys. 96, pp. 4655–4668

    Article  ADS  Google Scholar 

  97. E. B. Kim, R. Faller, Q. Yan, N. L. Abbott, and J. J. de Pablo (2002) Potential of mean force between a spherical particle suspended in a nematic liquid crystal and a substrate. J. Chem. Phys. 117, pp. 7781–7787

    Article  ADS  Google Scholar 

  98. N. B. Wilding and A. D. Bruce (2000) Freezing by Monte Carlo phase switch. Phys. Rev. Lett. 85, pp. 5138–5141

    Article  ADS  Google Scholar 

  99. M. B. Sweatman (2005) Self-referential Monte Carlo method for calculating the free energy of crystalline solids. Phys. Rev. E 72, 016711

    Article  ADS  Google Scholar 

  100. D. M. Eike, J. F. Brennecke, and E. J. Maginn (2005) Toward a robust and general molecular simulation method for computing solid-liquid coexistence. J. Chem. Phys. 122, 014115

    Article  ADS  Google Scholar 

  101. D. Moroni, P. Rein ten Wolde, and P. G. Bolhuis (2005) Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, p. 235703

    Article  ADS  Google Scholar 

  102. P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel (1996) Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, pp. 9932–9947

    Article  ADS  Google Scholar 

  103. B. B. Laird and R. L. Davidchack (2005) Direct calculation of the crystal-melt interfacial free energy via molecular dynamics computer simulation. J. Phys. Chem. B 109, pp. 17802–17812

    Article  Google Scholar 

  104. M. Müller, K. Binder, and W. Oed (1995) Structural and thermodynamic properties of interfaces between coexisting phases in polymer blends – a monte-carlo simulation. J. Chem. Soc. Faraday Trans. 91, pp. 2369–2379

    Article  Google Scholar 

  105. M. Müller and M. Schick (1996) Bulk and interfacial thermodynamics of a symmetric, ternary homopolymer-copolymer mixture: A Monte Carlo study. J. Chem. Phys. 105, pp. 8885–8901

    Article  ADS  Google Scholar 

  106. B. Grossmann and M. L. Laursen (1993) The confined deconfined interface tension in quenched qcd using the histogram method. Nuc. Phys. B 408, pp. 637–656

    Article  ADS  Google Scholar 

  107. F. Schmid and M. Müller (1995) Quantitative comparison of self-consistent-field theories for polymers near interfaces with monte-carlo simulations. Macromolecules 28, pp. 8639–8645

    Article  ADS  Google Scholar 

  108. A. Werner, F. Schmid, M. Müller, and K. Binder (1999) “Intrinsic” profiles and capillary waves at homopolymer interfaces: A Monte Carlo study. Phys. Rev. E 59, pp. 728–738

    Article  ADS  Google Scholar 

  109. M. Müller (2006) Soft Matter vol. 1, Chap. 3, pp. 179–283 edited by G. Gompper and M. Schick, Wiley-VCH, Weinheim

    Google Scholar 

  110. A. N. Semenov (1996) Theory of long-range interactions in polymer systems. J. Phys. (France) II, 6, pp. 1759–1780

    Article  Google Scholar 

  111. A. Werner, F. Schmid, and M. Müller (1999) Monte Carlo simulations of copolymers at homopolymer interfaces: Interfacial structure as a function of the copolymer density. J. Chem. Phys. 110, pp. 5370–5379

    Article  ADS  Google Scholar 

  112. H. Lu, B. Isralewitz, A. Krammer, V. Vogel, and K. Schulten (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, pp. 662–671

    Article  ADS  Google Scholar 

  113. C. Jarzynski (2001) How does a system respond when driven away from thermal equilibrium? Proc. Nat. Acad. Sci. 98, pp. 3636–3638

    Article  ADS  Google Scholar 

  114. H.C. Öttinger (2005) Beyond Equilibrium Thermodynamics. Wiley Interscience, New Jersey

    Book  Google Scholar 

  115. J. Baschnagel, K. Binder, P. Doruker, A. A. Gusev, O. Hahn, K. Kremer, W. L. Mattice, F. Muller-Plathe, M. Murat, W. Paul, S. Santos, U. W. Suter, and V. Tries (2000) Bridging the gap between atomistic and coarse-grained models of polymers: Status and perspectives. Adv. Polym. Sci. 152, pp. 41–156

    Article  Google Scholar 

  116. J. C. Shelley, M. Y. Shelley, R. C. Reeder, S. Bandyopadhyay, P. B. Moore, and M. L. Klein (2001) Simulations of phospholipids using a coarse grain model. J. Phys. Chem. B 105, pp. 9785–9752

    Article  Google Scholar 

  117. M. Müller, K. Katsov, and M. Schick (2003) Coarse-grained models and collective phenomena in membranes: Computer simulation of membrane fusion. J. Polym. Sci. B 41, pp. 1441–1450

    Article  Google Scholar 

  118. S. O. Nielsen, C. F. Lopez, G. Srinivas, and M. L. Klein (2004) Coarse grain models and the computer simulation of soft materials. J. Phys.: Condens. Matter 16, pp. R481–R512

    Article  ADS  Google Scholar 

  119. F. Müller-Plathe (2002) Chem. Phys. Chem. 3, p. 754

    Google Scholar 

  120. R. Faller, H. Schmitz, O. Biermann and F. Müller-Plathe (1999) Molecular mobility in cyclic hydrocarbons: A simulation study. J. Comput. Chem. 20, p. 1009; ibid. (2004) Polymer 45, p. 3869

    Google Scholar 

  121. L. Delle Site, C. F. Abrams, A. Alavi, and K. Kremer (2002) Polymers near metal surfaces: Selective adsorption and global conformations. Phys. Rev. Lett. 89, p. 156103; M. Praprotnik, L. Delle Site, and K. Kremer (2005) J. Chem. Phys. 123, p. 224106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Müller, M., de Pablo, J. (2006). Simulation Techniques for Calculating Free Energies. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1. Lecture Notes in Physics, vol 703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35273-2_3

Download citation

Publish with us

Policies and ethics