Skip to main content

Towards Implementable Nonlinear Stochastic Programming

  • Conference paper
Coping with Uncertainty

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 581))

Abstract

The concept of implementable nonlinear stochastic programming by finite series of Monte-Carlo samples is surveyed addressing the topics related with stochastic differentiation, stopping rules, conditions of convergence, rational setting of the parameters of algorithms, etc. Our approach distinguishes itself by treatment of the accuracy of solution in a statistical manner, testing the hypothese of optimality according to statistical criteria, and estimating confidence intervals of the objective and constraint functions. The rule for adjusting the Monte-Carlo sample size is introduced which ensures the convergence with the linear rate and enables us to solve the stochastic optimization problem using a reasonable number of Monte-Carlo trials. The issues of implementation of the developed approach in optimal decision making, portfolio optimization, engineering are considered, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrow, K.J., Hurwicz, L., and Uzawa, H. eds. (1958). Studies in Linear and Nonlinear Programming. Stanford University Press, Stanford, California.

    Google Scholar 

  2. Bartkute V. and Sakalauskas L. (2006). Simultaneous Perturbation Stochastic Approximation for Nonsmooth Functions. European Journal on Operational Research (accepted).

    Google Scholar 

  3. Bentkus V. and Goetze F. (1999) Optimal bounds in non-Gaussian limit theorems for U-statistics. Annals of Probability, 27(1), 454–521.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertsekas, D.I. (1982). Constrained Optimization and Lagrange Multiplier Methods. Academic Press, Paris-Toronto.

    MATH  Google Scholar 

  5. Bhattacharya, R.N., and Ranga Rao, R. (1976). Normal Approximation and Asymptotic Expansions. John Wiley, New York, London, Toronto.

    MATH  Google Scholar 

  6. Ermolyev, Ju.M. (1976). Methods of Stochastic Programming. Nauka, Moscow. 240 pp. (in Russian).

    Google Scholar 

  7. Ermolyev Yu., and Wets R. (1988). Numerical Techniques for Stochastic Optimization. Springer-Verlag, Berlin.

    Google Scholar 

  8. Ermolyev Yu. and Norkin I. (1995). On nonsmooth problems of stochastic systems optimization. WP-95-96, IIASA, A-2361, Laxenburg, Austria.

    Google Scholar 

  9. Jun Shao (1989) Monte-Carlo approximations in Bayessian decision theory. JASA, 84(407), 727–732.

    MATH  Google Scholar 

  10. Katkovnik V.J. (1976). Linear Estimators and Problems of Stochastic Optimization. Nauka, Moscow (in Russian).

    Google Scholar 

  11. King J. (1988). Stochastic Programming problems: Examples from the Literature. In: Ermolyev Ju and Wets R. (eds.), Numerical Techniques for Stochastic Optimization, Springer-Verlag, Berlin.

    Google Scholar 

  12. Kushner H, and Jin G.G. (2003). Stochastic Approximation and Recursive Algorithms and Applications. Springer, NY.

    MATH  Google Scholar 

  13. Stochastic optimization methods. Springer, NY. Marti K. (2005).

    MATH  Google Scholar 

  14. Mikhalevitch V.S., Gupal A.M. and Norkin V.I. (1987). Methods of Nonconvex Optimization. Nauka, Moscow (in Russian).

    Google Scholar 

  15. Pflug G.Ch. (1988). Step size rules, stopping times and their implementation in stochastic optimization algorithms. Numerical Techniques for Stochastic Optimization, Ermolyev, Ju., and Wets, R. (eds.), Springer-Verlag, Berlin, 353–372.

    Google Scholar 

  16. Polyak B.T. (1987). Introduction to Optimization. Translation Series in Mathematics and Engineering. Optimization Software, Inc, Publication Division, New York.

    Google Scholar 

  17. Prekopa A. (1980) Logarithmic concave metric and related topics. In: M.A.H. Dempster (ed.) Stochastic Programming. Academic Press, London, 63–82.

    Google Scholar 

  18. Rockafellar, R.T., and Wets, R. J.-B. (1994). A Lagrangian finite generation technique for solving linear-quadratic problems in stochastic programming. Mathematical Programming, 28, 63–93.

    Google Scholar 

  19. Rubinstein R. (1983). Smoothed functionals in stochastic optimization. Mathematical Operations Research, 8, 26–33.

    Article  MATH  ADS  Google Scholar 

  20. Rubinstein R. and Shapiro A. (1993). Discrete Events Systems: Sensitivity Analysis and Stochastic Optimization by the score function method. Wiley, New York, NY.

    Google Scholar 

  21. Sakalauskas L. (1997). A centering by the Monte-Carlo method. Stochastic Analysis and Applications, 15(4), 615–627.

    Article  MathSciNet  Google Scholar 

  22. Sakalauskas L. (1998). Portfolio management by the Monte-Carlo method. Proceedings of the 23rd Meeting of the European Working Group on Financial Modelling, Crakow, Progress & Business Publ., 179–188.

    Google Scholar 

  23. Sakalauskas L. (2000). Nonlinear Optimization by Monte-Carlo estimators. Informatica, 11(4), 455–468.

    MATH  MathSciNet  Google Scholar 

  24. Sakalauskas L. (2002) Nonlinear stochastic programming by Monte-Carlo estimators. European Journal on Operational Research, 137, 558–573.

    Article  MATH  MathSciNet  Google Scholar 

  25. Sakalauskas L. (2004). Application of the Monte-Carlo method to nonlinear stochastic optimization with linear constraionts. Informatica, 15(2), 271–282.

    MATH  MathSciNet  Google Scholar 

  26. Shapiro A. (1989). Asymptotic properties of statistical estimators in stochastic programming. The Annals of Statistics, 17(2), 841–858.

    Article  MATH  MathSciNet  Google Scholar 

  27. Shapiro A. and Homem-de-Mello T. (1998). A simulation-based approach to two-stage stochastic programming with recourse. Mathematical Programming, 81, 301–325.

    MATH  MathSciNet  Google Scholar 

  28. Yudin D.B. (1965). Qualitative methods for analysis of complex systems. Izv. AN SSSR, ser. Technicheskaya. Kibernetika, 1, 3–13 (in Russian).

    MATH  Google Scholar 

  29. Ziemba W. (1972) Solving nonlinear programming problems with stochastic objective functions. Journal of Financial and Quantitative Analysis, 7, 1995–2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sakalauskas, L. (2006). Towards Implementable Nonlinear Stochastic Programming. In: Coping with Uncertainty. Lecture Notes in Economics and Mathematical Systems, vol 581. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35262-7_15

Download citation

Publish with us

Policies and ethics