Advertisement

Simulation of the Unsteady Flow Field Around a Complete Helicopter with a Structured RANS Solver

  • Thorsten Schwarz
  • Walid Khier
  • Jochen Raddatz
Conference paper

Abstract

The air flow past a wind tunnel model of an Eurocopter BO-105 fuselage, main rotor and tail rotor configuration is simulated by solving the time dependent Navier-Stokes equations. The flow solver uses overlapping, block structured grids to discretize the computational domain. The simulation setup and the execution on a parallel NEC SX-6 vector computer are described. The numerical results are compared with unsteady pressure measurements on the fuselage and the blades. An overall good agreement is found. Differences between predicted and measured data on the main rotor and the tail rotor can be explained by blade elasticity effects and a different trim law respectively. The computational performance of the flow solver is analyzed for the NEC SX-6 and NEC SX-8 vector computer showing a good parallel performance. Modifications of the code structure resulted in a reduction of the execution time for the Chimera procedure by a factor of 6.6.

Keywords

Rotor Blade Main Rotor Vector Computer Tail Rotor Wind Tunnel Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gleize, V., Costes, M., Geyr, H., Kroll, N., Renzoni, P., Amato, M., Kokkalis, A., Muttura, L., Serr, C., Larrey, E., Filippone, A., Fischer, A.: Helicopter Fuselage Drag Prediction: State of the Art in Europe. AIAA-Paper 2001-0999, 2001Google Scholar
  2. 2.
    Beaumier, P., Chelli, E., Pahlke, K.: Navier-Stokes Prediction of Helicopter Rotor Performance in Hover Including Aero-Elastic Effects. American Helicopter Society 56th Annual Forum, Virginia Beach, Virginia, May 2–4, 2000Google Scholar
  3. 3.
    Pomin, H., Wagner, S.: Aeroelastic Analysis of Helicopter Rotor Blades on Deformable Chimera Grids. AIAA Paper 2002-0951Google Scholar
  4. 4.
    Pahlke, K., van der Wall, B.: Chimera Simulations of Multibladed Rotors in High-Speed Forward Flight with Weak Fluid-Structure-Interaction. Aerospace Science and Technology, Vol 9. pp. 379–389, 2005zbMATHCrossRefGoogle Scholar
  5. 5.
    Le Chuiton, F.: Actuator Disc Modelling For Helicopter Rotors. Aerospace Science and Technology, Vol. 8, No. 4, pp. 285–297, 2004zbMATHCrossRefGoogle Scholar
  6. 6.
    Meakin, R. B.: Moving Body Overset Grid Methods for Complete Aircraft Tiltrotor Simulations. AIAA-Paper 93-3359, 1993Google Scholar
  7. 7.
    Khier, W., le Chuiton, F., Schwarz, T.: Navier-Stokes Analysis of the Helicopter Rotor-Fuselage Interference in Forward Flight. CEAS Aerospace Aerodynamics Research Conference, Cambridge, England, June 10–12, 2002Google Scholar
  8. 8.
    Renauld, T., Le Pape, A., Benoit, C.: Unsteady Euler and Navier-Stokes computations of a complete helicopter. 31st European Rotorcraft Forum. Florence, Italy, September 13–15, 2005Google Scholar
  9. 9.
    Sides, J., Pahlke, K., Costes, M.: Numerical Simulation of Flows Around Helicopters at DLR and ONERA. Aerospace Science and Technology, Vol. 5, pp 35–53, 2001zbMATHCrossRefGoogle Scholar
  10. 10.
    Pahlke, K., Costes, M., D’Alascio, A., Castellin, C., Altmikus, A.: Overview of Results Obtained During the 6-Year French-German Chance Project. 31st European Rotorcraft Forum, Florence, Italy, September 13–15, 2005Google Scholar
  11. 11.
    Langer, H.-J., Dieterich, O., Oerlemans, S., Schneider, O., van der Wall, B., Yin, J.: The EU HeliNOVI Project — Wind Tunnel Investigations for Noise and Vibration Reduction. 31st European Rotorcraft Forum, Florence, Italy, September 13–15, 2005Google Scholar
  12. 12.
    Yin, J., van derWall, B., Oerlemans S.: Representative Test results from HeliNOVI Aeroacoustic Main Rotor/Tail Rotor/Fuselage Test in DNW. 31st European Rotorcraft Forum, Florence, Italy, September 13–15, 2005Google Scholar
  13. 13.
    Jameson, A., Schmidt, W., Turkel, E.: Numerical Solutions of the Euler Equations by Finite Volume Methods using Runge-Kutta Time-Stepping Schemes. AIAA-Paper 81-1259, 1981Google Scholar
  14. 14.
    Wilcox, D. C.: Reassessment of the Scale-Determining Equation for Advanced Turbulence Models. AIAA Journal, vol. 26, no. 11, November 1988Google Scholar
  15. 15.
    Rudnik, R.: Untersuchung der Leistungsfähigkeit von Zweigleichungs-Turbulenzmodellen bei Profilumströmungen. Deutsches Zentrum für Luft-und Raumfahrt e.V., FB 97–49, 1997Google Scholar
  16. 16.
    Jameson, A.: Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings. AIAA-paper 91-1596, 1991Google Scholar
  17. 17.
    Melson, N. D., Sanetrik, M. D., Atkins, H. L.: Time-Accurate Navier-Stokes Calculations with Multigrid Acceleration. Proceedings of the 6th Copper Mountain Conference on Multigrid Methods, NASA Conference Publication 3224, 1993, pp. 423–439Google Scholar
  18. 18.
    Benek, J. A., Steger, J. L., Dougherty, F. C.: A Flexible Grid Embedding Technique with Application to the Euler Equations. AIAA-Paper 83-1944, 1983Google Scholar
  19. 19.
    Schwarz, T.: The Overlapping Grid Technique for the Time-accurate Simulation of Rotorcraft Flows. 31st European Rotorcraft Forum, Florence, Italy, September 13–15, 2005Google Scholar
  20. 20.
    Khier, W., Schwarz, T., Raddatz, J.: Time-accurate Simulation of the Flow around the Complete BO-105 Wind Tunnel Model. 31st European Rotorcraft Forum, Florence, Italy, September 13–15, 2005Google Scholar
  21. 21.
    Jeong, J., Hussain, F.: On the identification of a vortex. Journal of Fluid Mechanics, vol. 285, pp. 69–94, 1995zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thorsten Schwarz
    • 1
  • Walid Khier
    • 1
  • Jochen Raddatz
    • 1
  1. 1.Member of the Helmholtz Association, Institute of Aerodynamics and Flow TechnologyGerman Aerospace Center (DLR)BraunschweigGermany

Personalised recommendations