Advertisement

Numerical Simulation of Transition and Turbulence in Wall-Bounded Shear Flow

  • Philipp Schlatter
  • Steffen Stolz
  • Leonhard Kleiser
Conference paper
  • 445 Downloads

Abstract

Laminar-turbulent transition encompasses the evolution of a flow from an initially ordered laminar motion into the chaotic turbulent state. Transition is important in a variety of technical applications, however its accurate prediction and the involved physical mechanisms are still a matter of active research.

In the present contribution, an overview is given on recent advances with the simulation of transitional and turbulent incompressible wall-bounded shear flows. The focus is on large-eddy simulations (LES). In LES, only the large-scale, energy-carrying vortices of the flow are accurately resolved on the numerical grid, whereas the small-scale fluctuations, assumed to be more homogeneous, are treated by a subgrid-scale (SGS) model. The application of LES to flows of technical interest is promising as LES provides reasonable accuracy at significantly reduced computational cost compared to fully-resolved direct numerical simulations (DNS). Nevertheless, LES of practical flows still require massive computational resources and the use of supercomputer facilities.

Keywords

Direct Numerical Simulation Direct Numerical Simulation Data Smagorinsky Model Hairpin Vortex Bypass Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bardina, J. H. Ferziger, and W. C. Reynolds. Improved subgrid models for large-eddy simulation. AIAA Paper, 1980–1357, 1980.Google Scholar
  2. L. Brandt, P. Schlatter, and D. S. Henningson. Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech., 517:167–198, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  3. V. M. Calo. Residual-based multiscale turbulence modeling: Finite volume simulations of bypass transition. PhD thesis, Stanford University, USA, 2004.Google Scholar
  4. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods in Fluid Dynamics. Springer, Berlin, Germany, 1988.zbMATHGoogle Scholar
  5. J. A. Domaradzki and N. A. Adams. Direct modelling of subgrid scales of turbulence in large eddy simulations. J. Turbulence, 3, 2002.Google Scholar
  6. F. Ducros, P. Comte, and M. Lesieur. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech., 326:1–36, 1996.zbMATHCrossRefGoogle Scholar
  7. N. M. El-Hady and T. A. Zang. Large-eddy simulation of nonlinear evolution and breakdown to turbulence in high-speed boundary layers. Theoret. Comput. Fluid Dynamics, 7:217–240, 1995.zbMATHCrossRefGoogle Scholar
  8. M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A, 3(7):1760–1765, 1991.zbMATHCrossRefGoogle Scholar
  9. B. J. Geurts. Elements of Direct and Large-Eddy Simulation. Edwards, Philadelphia, USA, 2004.Google Scholar
  10. N. Gilbert and L. Kleiser. Near-wall phenomena in transition to turbulence. In S. J. Kline and N. H. Afgan, editors, Near-Wall Turbulence — 1988 Zoran Zarić Memorial Conference, pages 7–27. Hemisphere, New York, USA, 1990.Google Scholar
  11. X. Huai, R. D. Joslin, and U. Piomelli. Large-eddy simulation of transition to turbulence in boundary layers. Theoret. Comput. Fluid Dynamics, 9:149–163, 1997.zbMATHCrossRefGoogle Scholar
  12. T. J. R. Hughes, L. Mazzei, and K. E. Jansen. Large eddy simulation and the variational multiscale method. Comput. Visual. Sci., 3:47–59, 2000.zbMATHCrossRefGoogle Scholar
  13. R. G. Jacobs and P. A. Durbin. Simulations of bypass transition. J. Fluid Mech., 428:185–212, 2001.zbMATHCrossRefGoogle Scholar
  14. J. Jeong and F. Hussain. On the identification of a vortex. J. Fluid Mech., 285:69–94, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  15. Y. S. Kachanov. Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid Mech., 26:411–482, 1994.MathSciNetGoogle Scholar
  16. G.-S. Karamanos and G. E. Karniadakis. A spectral vanishing viscosity method for large-eddy simulations. J. Comput. Phys., 163:22–50, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  17. L. Kleiser and T. A. Zang. Numerical simulation of transition in wall-bounded shear flows. Annu. Rev. Fluid Mech., 23:495–537, 1991.CrossRefGoogle Scholar
  18. M. Lesieur and O. Métais. New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech., 28:45–82, 1996.CrossRefGoogle Scholar
  19. D. K. Lilly. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A, 4(3):633–635, 1992.CrossRefMathSciNetGoogle Scholar
  20. C. Meneveau and J. Katz. Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech., 32:1–32, 2000.CrossRefMathSciNetGoogle Scholar
  21. C. Meneveau, T. S. Lund, and W. H. Cabot. A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech., 319:353–385, 1996.zbMATHCrossRefGoogle Scholar
  22. P. Moin and K. Mahesh. Direct numerical simulation: A tool in turbulence research. Annu. Rev. Fluid Mech., 30:539–578, 1998.CrossRefMathSciNetGoogle Scholar
  23. J. Nordström, N. Nordin, and D. S. Henningson. The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM J. Sci. Comput., 20(4):1365–1393, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  24. U. Piomelli. Large-eddy and direct simulation of turbulent flows. In CFD2001 — 9e conférence annuelle de la société Canadienne de CFD. Kitchener, Ontario, Canada, 2001.Google Scholar
  25. U. Piomelli, W. H. Cabot, P. Moin, and S. Lee. Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A, 3(7):1799–1771, 1991.CrossRefGoogle Scholar
  26. U. Piomelli, T. A. Zang, C. G. Speziale, and M. Y. Hussaini. On the large-eddy simulation of transitional wall-bounded flows. Phys. Fluids A, 2(2):257–265, 1990.CrossRefGoogle Scholar
  27. D. Rempfer. Low-dimensional modeling and numerical simulation of transition in simple shear flows. Annu. Rev. Fluid Mech., 35:229–265, 2003.CrossRefMathSciNetGoogle Scholar
  28. P. Sagaut. Large Eddy Simulation for Incompressible Flows. Springer, Berlin, Germany, 3rd edition, 2005.Google Scholar
  29. P. Schlatter. Large-eddy simulation of transition and turbulence in wall-bounded shear flow. PhD thesis, ETH Zürich, Switzerland, Diss. ETH No. 16000, 2005. Available online from http://e-collection.ethbib.ethz.ch.Google Scholar
  30. P. Schlatter, N. A. Adams, and L. Kleiser. A windowing method for periodic inflow/outflow boundary treatment of non-periodic flows. J. Comput. Phys., 206(2):505–535, 2005a.zbMATHCrossRefMathSciNetGoogle Scholar
  31. P. Schlatter, S. Stolz, and L. Kleiser. LES of transitional flows using the approximate deconvolution model. Int. J. Heat Fluid Flow, 25(3):549–558, 2004a.CrossRefGoogle Scholar
  32. P. Schlatter, S. Stolz, and L. Kleiser. Relaxation-term models for LES of transitional/turbulent flows and the effect of aliasing errors. In R. Friedrich, B. J. Geurts, and O. Métais, editors, Direct and Large-Eddy Simulation V, pages 65–72. Kluwer, Dordrecht, The Netherlands, 2004b.Google Scholar
  33. P. Schlatter, S. Stolz, and L. Kleiser. Evaluation of high-pass filtered eddy-viscosity models for large-eddy simulation of turbulent flows. J. Turbulence, 6(5), 2005b.Google Scholar
  34. P. Schlatter, S. Stolz, and L. Kleiser. LES of spatial transition in plane channel flow. J. Turbulence, 2006. To appear.Google Scholar
  35. P. Schlatter, S. Stolz, and L. Kleiser. Applicability of LES models for prediction of transitional flow structures. In R. Govindarajan, editor, Laminar-Turbulent Transition. Sixth IUTAM Symposium 2004 (Bangalore, India), Springer, Berlin, Germany, 2005d.Google Scholar
  36. P. J. Schmid and D. S. Henningson. Stability and Transition in Shear Flows. Springer, Berlin, Germany, 2001.zbMATHGoogle Scholar
  37. J. Smagorinsky. General circulation experiments with the primitive equations. Mon. Weath. Rev., 91(3):99–164, 1963.CrossRefGoogle Scholar
  38. S. Stolz and N. A. Adams. An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids, 11(7):1699–1701, 1999.CrossRefGoogle Scholar
  39. S. Stolz and N. A. Adams. Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys. Fluids, 15(8):2398–2412, 2003.CrossRefGoogle Scholar
  40. S. Stolz, N. A. Adams, and L. Kleiser. An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids, 13(4):997–1015, 2001a.CrossRefGoogle Scholar
  41. S. Stolz, N. A. Adams, and L. Kleiser. The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids, 13(10):2985–3001, 2001b.CrossRefGoogle Scholar
  42. S. Stolz, P. Schlatter, and L. Kleiser. High-pass filtered eddy-viscosity models for large-eddy simulations of transitional and turbulent flow. Phys. Fluids, 17:065103, 2005.CrossRefGoogle Scholar
  43. S. Stolz, P. Schlatter, D. Meyer, and L. Kleiser. High-pass filtered eddy-viscosity models for LES. In R. Friedrich, B. J. Geurts, and O. Métais, editors, Direct and Large-Eddy Simulation V, pages 81–88. Kluwer, Dordrecht, The Netherlands, 2004.Google Scholar
  44. E. R. van Driest. On the turbulent flow near a wall. J. Aero. Sci., 23:1007–1011, 1956.Google Scholar
  45. P. Voke and Z. Yang. Numerical study of bypass transition. Phys. Fluids, 7(9):2256–2264, 1995.zbMATHCrossRefGoogle Scholar
  46. A. W. Vreman. The filtering analog of the variational multiscale method in large-eddy simulation. Phys. Fluids, 15(8):L61–L64, 2003.CrossRefMathSciNetGoogle Scholar
  47. Y. Zang, R. L. Street, and J. R. Koseff. A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A, 5(12):3186–3196, 1993.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Philipp Schlatter
    • 1
  • Steffen Stolz
    • 1
  • Leonhard Kleiser
    • 1
  1. 1.Institute of Fluid DynamicsETH ZurichZurichSwitzerland

Personalised recommendations