First-Principles Simulation on Femtosecond Dynamics in Condensed Matters Within TDDFT-MD Approach
Conference paper
- 428 Downloads
Abstract
In this article, we introduce a new approach based on the time-dependent density functional theory (TDDFT), where the real-time propagation of the Kohn-Sham wave functions of electrons are treated by integrating the time-evolution operator. We have combined this technique with conventional classical molecular dynamics simulation for ions in order to see very fast phenomena in condensed matters like as photo-induced chemical reactions and hot-carrier dynamics. We briefly introduce this technique and demonstrate some examples of ultra-fast phenomena in carbon nanotubes.
Keywords
Carbon Nanotubes Density Functional Theory Molecular Dynamic Simulation Snap Shot Angular Quantum Number
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefMathSciNetGoogle Scholar
- 2.W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).CrossRefMathSciNetGoogle Scholar
- 3.E. Runge and E. K. U Gross, Phys. Rev. Lett. 52, 997 (1984).CrossRefGoogle Scholar
- 4.K. Yabana and G. F. Bertsch, Phys. Rev. B54, 4484 (1996).Google Scholar
- 5.S. Sugino and Y. Miyamoto, Phys. Rev. B59, 2579 (1999); ibid, Phys. Rev. B66 89901(E) (2002).Google Scholar
- 6.P. Ehrenfest, Z. Phys. 45, 455 (1927)CrossRefGoogle Scholar
- 7.M. Suzuki, J. Phys. Soc. Jpn. 61, L3015 (1992); M. Suzuki and T. Yamauchi, J. Math. Phys. 34, 4892 (1993).CrossRefGoogle Scholar
- 8.L. Kleinmann and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).CrossRefGoogle Scholar
- 9.S. Iijima, T. Ichihashi, Nature (London) 363, 603 (1993).CrossRefGoogle Scholar
- 10.J. P. Perdew, A. Zunger, Phys. Rev. B23, 5048 (1981).Google Scholar
- 11.D. M. Ceperley, B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
- 12.N. Troullier, J. L. Martins, Phys. Rev. B43, 1993 (1991).Google Scholar
- 13.J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409 (1979).CrossRefGoogle Scholar
- 14.See, for example, M. Ishida, H. Hongo, F. Nihey, and Y. Ochiai, Jpn. J. Appl. Phys. 43, L1356 (2004).CrossRefGoogle Scholar
- 15.S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Chem. Phys. Lett. 360, 229 (2002).CrossRefGoogle Scholar
- 16.K. Hata, D. N. Futaba, K. Mizuno, T. Namai M. Yumura, S. Iijima, Science 306, 1362 (2004).CrossRefGoogle Scholar
- 17.A. Kuznetsova et al., J. Am. Chem. Soc. 123, 10699 (2001).CrossRefGoogle Scholar
- 18.E. Bekyarova et al., Chem. Phys. Lett. 366, 463 (200).Google Scholar
- 19.Y. Miyamoto, N. Jinbo, H. Nakamura, A. Rubio, and D. Tománek, Phys. Rev. B70, 233408 (2004).Google Scholar
- 20.S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris, Phys. Rev. Lett., 89, 106801 (2002).CrossRefGoogle Scholar
- 21.F. Nihey, H. Hongo, M. Yudasaka, and S. Iijima, Jpn. J. Appl. Phys. 41, L1049 (2002).CrossRefGoogle Scholar
- 22.“Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes”, by S. Y. Set, H. Yaguchi, M. Jablonski, Y. Tanaka, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, K. Kikuchi, Proc. of Optical Fiber Communication Conference 2003, March 23–28 (2003).Google Scholar
- 23.T. Hertel and G. Moos, Phys. Rev. Lett. 84, 5002 (2000).CrossRefGoogle Scholar
- 24.M. Ichida, Y. Hamanaka, H. Kataura, Y. Achiba, and A. Nakamura, Physica B323, 237 (2002).Google Scholar
- 25.Z. M. Li, et al., Phys. Rev. Lett. 87, 127401 (2001).CrossRefGoogle Scholar
- 26.S. Nosé, J. Chem. Phys. 81, 511 (1984).CrossRefGoogle Scholar
- 27.W. G. Hoover, Phys. Rev. A31, 1695 (1985).Google Scholar
- 28.F. Gai, et. al., Science 79, 1866 (1998).Google Scholar
- 29.J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971).CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2006