Skip to main content

First-Principles Simulation on Femtosecond Dynamics in Condensed Matters Within TDDFT-MD Approach

  • Conference paper
High Performance Computing on Vector Systems
  • 510 Accesses

Abstract

In this article, we introduce a new approach based on the time-dependent density functional theory (TDDFT), where the real-time propagation of the Kohn-Sham wave functions of electrons are treated by integrating the time-evolution operator. We have combined this technique with conventional classical molecular dynamics simulation for ions in order to see very fast phenomena in condensed matters like as photo-induced chemical reactions and hot-carrier dynamics. We briefly introduce this technique and demonstrate some examples of ultra-fast phenomena in carbon nanotubes.

The author is indebted to Professor Osamu Sugino for his great contribution in developing the computer code “FPSEID” (éf-psái-dí:), which means First-Principles Simulation tool for Electron Ion Dynamics. The MPI version of the FPSEID has been developed with a help of Mr. Takeshi Kurimoto and CCRL MPI-team at NEC Europe (Bonn). The researches on carbon nanotubes were done in collaboration with Professors Angel Rubio and David Tomáanek. Most of the calculations were performed by using the Earth Simulator with a help by Noboru Jinbo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  Google Scholar 

  2. W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  Google Scholar 

  3. E. Runge and E. K. U Gross, Phys. Rev. Lett. 52, 997 (1984).

    Article  Google Scholar 

  4. K. Yabana and G. F. Bertsch, Phys. Rev. B54, 4484 (1996).

    Google Scholar 

  5. S. Sugino and Y. Miyamoto, Phys. Rev. B59, 2579 (1999); ibid, Phys. Rev. B66 89901(E) (2002).

    Google Scholar 

  6. P. Ehrenfest, Z. Phys. 45, 455 (1927)

    Article  Google Scholar 

  7. M. Suzuki, J. Phys. Soc. Jpn. 61, L3015 (1992); M. Suzuki and T. Yamauchi, J. Math. Phys. 34, 4892 (1993).

    Article  Google Scholar 

  8. L. Kleinmann and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

    Article  Google Scholar 

  9. S. Iijima, T. Ichihashi, Nature (London) 363, 603 (1993).

    Article  Google Scholar 

  10. J. P. Perdew, A. Zunger, Phys. Rev. B23, 5048 (1981).

    Google Scholar 

  11. D. M. Ceperley, B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  Google Scholar 

  12. N. Troullier, J. L. Martins, Phys. Rev. B43, 1993 (1991).

    Google Scholar 

  13. J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409 (1979).

    Article  Google Scholar 

  14. See, for example, M. Ishida, H. Hongo, F. Nihey, and Y. Ochiai, Jpn. J. Appl. Phys. 43, L1356 (2004).

    Article  Google Scholar 

  15. S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Chem. Phys. Lett. 360, 229 (2002).

    Article  Google Scholar 

  16. K. Hata, D. N. Futaba, K. Mizuno, T. Namai M. Yumura, S. Iijima, Science 306, 1362 (2004).

    Article  Google Scholar 

  17. A. Kuznetsova et al., J. Am. Chem. Soc. 123, 10699 (2001).

    Article  Google Scholar 

  18. E. Bekyarova et al., Chem. Phys. Lett. 366, 463 (200).

    Google Scholar 

  19. Y. Miyamoto, N. Jinbo, H. Nakamura, A. Rubio, and D. Tománek, Phys. Rev. B70, 233408 (2004).

    Google Scholar 

  20. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris, Phys. Rev. Lett., 89, 106801 (2002).

    Article  Google Scholar 

  21. F. Nihey, H. Hongo, M. Yudasaka, and S. Iijima, Jpn. J. Appl. Phys. 41, L1049 (2002).

    Article  Google Scholar 

  22. “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes”, by S. Y. Set, H. Yaguchi, M. Jablonski, Y. Tanaka, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, K. Kikuchi, Proc. of Optical Fiber Communication Conference 2003, March 23–28 (2003).

    Google Scholar 

  23. T. Hertel and G. Moos, Phys. Rev. Lett. 84, 5002 (2000).

    Article  Google Scholar 

  24. M. Ichida, Y. Hamanaka, H. Kataura, Y. Achiba, and A. Nakamura, Physica B323, 237 (2002).

    Google Scholar 

  25. Z. M. Li, et al., Phys. Rev. Lett. 87, 127401 (2001).

    Article  Google Scholar 

  26. S. Nosé, J. Chem. Phys. 81, 511 (1984).

    Article  Google Scholar 

  27. W. G. Hoover, Phys. Rev. A31, 1695 (1985).

    Google Scholar 

  28. F. Gai, et. al., Science 79, 1866 (1998).

    Google Scholar 

  29. J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miyamoto, Y. (2006). First-Principles Simulation on Femtosecond Dynamics in Condensed Matters Within TDDFT-MD Approach. In: Resch, M., Bönisch, T., Benkert, K., Bez, W., Furui, T., Seo, Y. (eds) High Performance Computing on Vector Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35074-8_5

Download citation

Publish with us

Policies and ethics