Advertisement

Direct Numerical Simulation of Shear Flow Phenomena on Parallel Vector Computers

  • Andreas Babucke
  • Jens Linn
  • Markus Kloker
  • Ulrich Rist
Conference paper

Abstract

A new code for direct numerical simulations solving the complete compressible 3-D Navier-Stokes equations is presented. The scheme is based on 6th-order compact finite differences and a spectral ansatz in spanwise direction. A hybrid MPI/shared-memory parallelization is implemented to utilize modern parallel vector computers as provided by HLRS. Domain decomposition and modular boundary conditions allow the application to various problems while keeping a high vectorization for favourable computing performance. The flow chosen for first computations is a mixing layer which may serve as a model flow for the initial part of a jet. The aim of the project is to learn more on the mechanisms of sound generation.

Keywords

Domain Decomposition Phase Speed Spanwise Direction Linear Stability Theory Spanwise Vorticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, J. D.: Computational Fluid Dynamics. McGraw-Hill, 1995Google Scholar
  2. 2.
    Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral methods in fluid dynamics, Springer Series of Computational Physics (1988), Springer Verlag, BerlinGoogle Scholar
  3. 3.
    Colonius T., Lele S. K., Moin P.: Boundary Conditions for Direct Computation of Aerodynamic Sound Generation. AIAA-Journal 31, no. 9 (1993), 1574–1582zbMATHGoogle Scholar
  4. 4.
    Colonius T., Lele S. K., Moin P.: Sound Generation in a mixing layer. J. Fluid Mech. 330 (1997), 375–409zbMATHCrossRefGoogle Scholar
  5. 5.
    Eißler, W.: Numerische Untersuchung zum laminar-turbulenten Strömungsumschlag in überschallgrenzschichten. Dissertation, Universität Stuttgart, 1995Google Scholar
  6. 6.
    Freund J. B.: Noise Sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438 (2001), 277–305zbMATHCrossRefGoogle Scholar
  7. 7.
    Giles M. B.: Non-reflecting boundary conditions for Euler equation calculations. AIAA-Journal 28, no. 12 (1990), 2050–2058CrossRefGoogle Scholar
  8. 8.
    Kloker, M. J.: A robust high-resolution split type compact FD scheme for spatial direct numerical simulation of boundary-layer transition. Applied Scientific Research 59 (1998), 353–377zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lele, S. K.: Compact Finite Difference Schemes with Spectral-like Resolution. J. Comp. Physics 103 (1992), 16–42zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mack L. M.: Boundary-layer linear stability theory. AGARD-Report 709 (1984), 3.1–3.81Google Scholar
  11. 11.
    Kofler, M.: Maple V Release 2. Addison-Wesley, 1994Google Scholar
  12. 12.
    MPI Forum Mpi A message-passing interface standard. Technical Report CS-94-230, University of Tennessee, Knoxville, 1994Google Scholar
  13. 13.
    Thumm, A.: Numerische Untersuchung zum laminar-turbulenten Grenzschichtumschlag in transsonischen Grenzschichtströmungen. Dissertation, Universit ät Stuttgart, 1991Google Scholar
  14. 14.
    http://www.hlrs.de/hw-access/platforms/sx8/Google Scholar
  15. 15.
    http://www.iag.uni-stuttgart.de/DFG-CNRS/Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andreas Babucke
    • 1
  • Jens Linn
    • 1
  • Markus Kloker
    • 1
  • Ulrich Rist
    • 1
  1. 1.Institute of Aerodynamics and GasdynamicsUniversity of StuttgartStuttgartGermany

Personalised recommendations