Skip to main content

A Hybrid LES/CAA Method for Aeroacoustic Applications

  • Conference paper
High Performance Computing on Vector Systems

Abstract

This paper describes a hybrid LES/CAA approach for the numerical prediction of airframe and combustion noise. In the hybrid method first a Large-Eddy Simulation (LES) of the flow field containing the acoustic source region is carried out from which then the acoustic sources are extracted. These are then used in the second computational Aeroacoustics (CAA) step in which the acoustic field is determined by solving linear acoustic perturbation equations. For the application of the CAA method to a unconfined turbulent flame, an extension of the method to reacting flow fields is presented. The LES method is applied to a turbulent flow over an airfoil with a deflected flap at a Reynolds number of Re = 106. The comparison of the numerical results with the experimental data shows a good agreement which shows that the main characteristics of the flow field are well resolved by the LES. However, it is also shown that a zonal LES which concentrates of the trailing edge region on a refined local mesh leads to a further improvement of the accuracy. In the second part of the paper, the CAA method with the extension to reacting flows is explained by an application to a non-premixed turbulent flame. The monopole nature of the combustion noise is clearly verified, which demonstrates the capability of the hybrid LES/CAA method for noise prediction in reacting flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ewert, R., Schröder, W.: On the simulation of trailing edge noise with a hybrid LES/APE method. J. Sound and Vibration 270 (2004) 509–524

    Article  Google Scholar 

  2. Wagner, S., Bareiß, R., Guidati, G.: Wind Turbine Noise. Springer, Berlin (1996)

    Google Scholar 

  3. Howe, M.S.: Trailing edge noise at low mach numbers. J. Sound and Vibration 225 (2000) 211–238

    Article  Google Scholar 

  4. Davidson, L., Cokljat, D., Fröhlich, J., Leschziner, M., Mellen, C., Rodi, W.: LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil. Springer, Berlin (2003)

    MATH  Google Scholar 

  5. El-Askary, W.A.: Zonal Large Eddy Simulations of Compressible Wall-Bounded Flows. PhD thesis, Aerodyn. Inst. RWTH Aachen (2004)

    Google Scholar 

  6. Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comp. Phys. 101 (1992) 104–129

    Article  MATH  MathSciNet  Google Scholar 

  7. Ewert, R., Meinke, M., Schröder, W.: Computation of trailing edge noise via LES and acoustic perturbation equations. Paper 2002–2467, AIAA (2002)

    Google Scholar 

  8. Schröder, W., Meinke, M., El-Askary, W.A.: LES of turbulent boundary layers. In: Second International Conference on Computational Fluid Dynamics ICCFD II, Sydney. (2002)

    Google Scholar 

  9. El-Askary, W.A., Schröder, W., Meinke, M.: LES of compressible wall bounded flows. Paper 2003–3554, AIAA (2003)

    Google Scholar 

  10. Schröder, W., Ewert, R.: Computational aeroacoustics using the hybrid approach (2004) VKI Lecture Series 2004–05: Advances in Aeroacoustics and Applications.

    Google Scholar 

  11. Würz, W., Guidati, S., Herr, S.: Aerodynamische Messungen im Laminarwindkanal im Rahmen des DFG-Forschungsprojektes SWING+ Testfall 1 und Testfall 2 (2002) Inst. für Aerodynamik und Gasdynamik, Universität Stuttgart.

    Google Scholar 

  12. Strahle, W.C.: Some results in combustion generated noise. J. Sound and Vibration 23 (1972) 113–125

    Article  Google Scholar 

  13. Crighton, D., Dowling, A., Williams, J.F.: Modern Methods in analytical acoustics, Lecture Notes. Springer, Berlin (1996)

    Google Scholar 

  14. Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via source filtering. J. Comp. Phys. 188 (2003) 365–398

    Article  MATH  Google Scholar 

  15. Bui, T.P., Meinke, M., Schröder, W.: A hybrid approach to analyze the acoustic field based on aerothermodynamics effects. In: Proceedings of the joint congress CFA/DAGA’ 04, Strasbourg. (2004)

    Google Scholar 

  16. Kotake, S.: On combustion noise related to chemical reactions. J. Sound and Vibration 42 (1975) 399–410

    Article  Google Scholar 

  17. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale viscosity model. Phys. of Fluids 7 (1991) 1760–1765

    Google Scholar 

  18. Waterson, N.P.: Development of a bounded higher-order convection scheme for general industrial applications. In: Project Report 1994–33, von Karman Institute. (1994)

    Google Scholar 

  19. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comp. Phys. 186 (2003) 652–665

    Article  MATH  Google Scholar 

  20. Düsing, M., Kempf, A., Flemming, F., Sadiki, A., Janicka, J.: Combustion les for premixed and diffusion flames. In: VDI-Berichte Nr. 1750, 21. Deutscher Flammentag, Cottbus. (2003) 745–750

    Google Scholar 

  21. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comp. Phys. 107 (1993) 262–281

    Article  MATH  MathSciNet  Google Scholar 

  22. Hu, F.Q., Hussaini, M.Y., Manthey, J.L.: Low-dissipation and low-dispersion runge-kutta schemes for computational acoustics. J. Comp. Phys. 124 (1996) 177–191

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Q., Bui, P., El-Askary, W.A., Meinke, M., Schröder, W. (2006). A Hybrid LES/CAA Method for Aeroacoustic Applications. In: Resch, M., Bönisch, T., Benkert, K., Bez, W., Furui, T., Seo, Y. (eds) High Performance Computing on Vector Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35074-8_10

Download citation

Publish with us

Policies and ethics