Advertisement

Thermische Größen

Chapter
  • 595 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Weber D, Nau N (1988) Elektrische Temperaturmessung. Firmenschrift Juchheim, FuldaGoogle Scholar
  2. 2.
    Tschubik IA, Maslow AM (1973) Wärmephysikalische Konstanten von Lebensmitteln und Halbfabrikaten. VEB, LeipzigGoogle Scholar
  3. 3.
    Hayes GD (1987) Food engineering data handbook. Longman Scientifc and Technical, Harlow, UKGoogle Scholar
  4. 4.
    Rao MA, Rizvi SSH (1995) Engineering properties of foods. Marcel Dekker, New YorkGoogle Scholar
  5. 5.
    Sweat (1974) in: Jowitt R, Escher F, Kent M, McKenna B, Roques M (1987) Physical properties of food — 2. Elsevier Applied Science, New YorkGoogle Scholar
  6. 6.
    Dickersen (1965) in: Jowitt R, Escher F, Kent M, McKenna B, Roques M (1987) Physical properties of food — 2. Elsevier Applied Science, New YorkGoogle Scholar
  7. 7.
    ASHRAE-Handbook (1981) Fundamentals. American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, GeorgiaGoogle Scholar
  8. 8.
    Kranz OM (1995) Vademecum für Pharmazeuten. Editio-Cantor-Verlag, AulendorfGoogle Scholar
  9. 9.
    Nährwertkennzeichnungsverordnung (NKV) vom 25.11.1994 BGBl.I S.3526Google Scholar
  10. 10.
    Pope MI, Judd MD (1977) Differential thermal analysis, Heyden LondonGoogle Scholar
  11. 11.
    Lombardi G (1980) For better Thermal Analysis, 2. ed. International Conference on Thermal Analysis (ICTA) Universität RomGoogle Scholar
  12. 12.
    Hemminger W, Höhne G (1979) Grundlagen der Kalorimetrie, Verlag Chemie, WeinheimGoogle Scholar
  13. 13.
    Hemminger W, Cammenga HK (1989) Methoden der thermischen Analyse, Springer Verlag, HeidelbergGoogle Scholar
  14. 14.
    Fischer C, Cammenga HK (2001) When are coffee beans just right? Development of physicochemical properties during roasting. Proc IXX Int Conf on Coffee Science ASIC (Association Scientifique Internationale du Café) Trieste/ItaliaGoogle Scholar
  15. 15.
    Cammenga HK (2004) Thermochemistry of the roasting of coffee beans for optimal modelling, and conduct of coffee roasting. Proc XX Int Conf on Coffee Science ASIC (Association Scientifique Internationale du Café) Bangalore/IndiaGoogle Scholar
  16. 16.
    Wiedemann HG (1970) in: Vacuum Microbalance Techniques. Vol. 7, 217–229 (CH Massen, HJ van Beckum; eds) Plenum Press, New YorkGoogle Scholar
  17. 17.
    Hemminger W, Höhne G (1984) Calorimetry-Fundamentals and Practise, Verlag Chemie, WeinheimGoogle Scholar
  18. 18.
    Harwalker VR, Ma CY (1990) Thermal analysis of foods. Elsevier Applied Science, New YorkGoogle Scholar
  19. 19.
    Slade L, Levine H (1995) Water and the glass transition — dependence of the glass transition on composition and chemical structure: special implications for flour functionality in cookie baking. J Food Engineering 24: 431–509CrossRefGoogle Scholar
  20. 20.
    Roos YH (1995) Phase transitions in foods. Academic Press, San DiegoGoogle Scholar
  21. 21.
    Roos Y (1995) Characterization of food polymers using state diagrams. J Food Engineering 24: 339–360CrossRefGoogle Scholar
  22. 22.
    Figura LO (2003) Thermoanalytische Charakterisierung teilkristalliner Trehalose, in: Kunze W (Hrsg) Anwenderseminar Thermische Analyse in der pharmazeutischen Industrie und der Lebensmitteltechnologie, Würzburger Tage 2003, Reuters, Alzenau, p 125–137Google Scholar
  23. 23.
    Schick C, Merzlyakov M (2000) Optimization of experimental parameters in TMDSC: The influence of non-linear and non-stationary thermal response. J Therm Anal and Calorimetry 61: 649–657CrossRefGoogle Scholar
  24. 24.
    Balasubramaniam VM, Sastry SK (1995) Use of liquid crystals as temperature sensors in food processing research. J Food Engineering 26: 219–230CrossRefGoogle Scholar
  25. 25.
    Aust P (1996) Frozen food temperature abuse indicator. Trends in Food Science and Technology 7: 175Google Scholar
  26. 26.
    Fanni J, Ramet JP (1996) Time-temperature indicator. Trends in Food Science and Technology 7: 67–68Google Scholar
  27. 27.
    Trintignac F (1997) Time-temperature monitor. Trends in Food Science and Technology 8: 208CrossRefGoogle Scholar
  28. 28.
    Karunakar B, Sushanta KM, Bandyopadhyay S (1998) Specific heat and thermal conductivity of shrimp meat. J Food Engineering 37:345–351CrossRefGoogle Scholar
  29. 29.
    Cogné C, Andrieu J, Laurent P, Besson A, Nocquet J (2003) Experimental data and modelling of thermal properties of ice creams. J Food Engineering 58: 331–341CrossRefGoogle Scholar
  30. 30.
    Kee WL, Ma S, Wilson DI (2002) Thermal diffusivity measurements of petfood. Int J Food Properties 5: 145CrossRefGoogle Scholar
  31. 31.
    Krokida MK, Michailidis PA, Maroulis ZB, Saravacos GD (2002) Literature data of thermal conductivity of foodstuffs. Intern J Food Properties 5: 63CrossRefGoogle Scholar
  32. 32.
    Zogzas NP, Krokida MK, Michailidis PA, Maroulis ZB (2002) Literature data of heat transfer coefficients in food processing. Intern J of Food Properties 5: 391CrossRefGoogle Scholar
  33. 33.
    Maroulis ZB, Saravacos GD, Krokida, MK, Panagiotou NM (2002) Thermal conductivity prediction for foodstuffs: effect of moisture content and temperature. Intern J Food Properties 5: 23Google Scholar
  34. 34.
    Tocci AM, Mascheroni RH (1998) Characteristics of differential scanning calorimetry determination of thermophysical properties of meats. Lebensmittel-Wissenschaft-und-Technologie 31: 418–426CrossRefGoogle Scholar
  35. 35.
    Marschoun L, Muthukumarappan K, Gunasekaran S (2001) Thermal properties of cheddar cheese: experimental and modeling. Int J Food Properties 4: 383CrossRefGoogle Scholar
  36. 36.
    Lind I (1991) The measurement and prediction of thermal properties of food during freezing and thawing — a review with particular reference to meat and dough. J Food-Engineering 13: 285–319CrossRefGoogle Scholar
  37. 37.
    Laaksonen TJ (2001) Effects of ingredients on phase and state transistions of frozen wheat doughs. Dissertation, University of HelsinkiGoogle Scholar
  38. 38.
    Cammenga HK, Gehrich K (2003) Lagerstabilität von Süßwaren: Jedes Süßungsmittel ist anders. LVT Lebensmittel Industrie 48(7/8): 12–14Google Scholar
  39. 39.
    Gehrich K (2002) Phasenverhalten einiger Zucker und Zuckeraustauschstoffe. Dissertation, Technische Universität BraunschweigGoogle Scholar
  40. 40.
    Schebor C, del Pilar Buera M, Chirife J (1996) Glassy state in relation to the thermal inactivation of the enzyme invertase in amorphous dried matrices of trehalose, maltodextrin and pvp. J Food Engineering 30: 269–282CrossRefGoogle Scholar
  41. 41.
    Levi G, Karel M (1995) The effect of phase transitions on release of n-propanol entrapped in carbohydrate glasses. J Food Engineering 24: 1–13CrossRefGoogle Scholar
  42. 42.
    Delgado AE, Sun DW (2002) Desorption isotherms and glass transition temperature for chicken meat. J of Food Engineering 55: 1–8CrossRefGoogle Scholar
  43. 43.
    Moraga G, MartÍnez-Navarrete N, Chiralt A (2004) Water sorption isotherms and glass transition in strawberries: influence of pre-treatment. J Food Engineering 62: 315–321CrossRefGoogle Scholar
  44. 44.
    Biliaderis CG, Lazaridou A, Mavropoulos A, Barbayiannis N (2002) Water plasticization effects on crystallization behavior of lactose in a co-lyophilized amorphous polysaccharide matrix and its relevance to the. International J Food Properties 5: 463CrossRefGoogle Scholar
  45. 45.
    Ablett S, Darke AH, Lillford PJ, Martin DR (1999) Glass formation and dormancy in bacterial spores. Int J Food Sci Tech 34: 59–69CrossRefGoogle Scholar
  46. 46.
    Figura LO, Epple W (1994) Anhydrous lactose: a study with DSC and TXRD. J Therm Anal 41: 45–53Google Scholar
  47. 47.
    Geilinger IB (1982) Einfluss verschiedener Verfahren zur Schokoladenherstellung auf Kakaoinhaltsstoffe. Dissertation, ETH ZürichGoogle Scholar
  48. 48.
    Masberg St (1999) Differentialkalorimetrie (DSC) und Differenzthermoanalyse (DTA) bei hohen Drücken. Dissertation, Universität BochumGoogle Scholar
  49. 49.
    Epple M (1992) Untersuchung von Festkörperreaktionen und fest-fest-Phasenumwandlungen mit zeit-und temperaturaufgelöster Röntgendiffraktometrie. Dissertation, Technische Universität BraunschweigGoogle Scholar
  50. 50.
    Sarge St (1988) Dynamische Kalorimetrie zur Bestimmung der Reinheit organischer und anorganischer Substanzen sowie der Energetik und Kinetik elementorganischer Umlagerungsreaktionen. Dissertation, Technische Universität BraunschweigGoogle Scholar
  51. 51.
    Gabel P (1988) Charakterisierung von Adsorbentien für einen Einsatz in der Kaffeeindustrie. Dissertation, Technische Universität BraunschweigGoogle Scholar
  52. 52.
    Hui YH (ed) (1991) Data sourcebook for food scientists and technologists. VCH Publishers Inc, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Personalised recommendations