Skip to main content

From Trajectory Control to Task Space Control – Emergence of Self Organization in Complex Systems

  • Chapter
Book cover Emergent Properties in Natural and Artificial Dynamical Systems

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

A consequence of very fast technology development is the appearance of new phenomena in man made systems related to their large number of heterogeneous interacting components. Then because of resulting larger complexity over passing human operator capability, the system can no longer be only guided and controlled at trajectory level. A larger and more global delegation should be given the system at decision making, and it is proposed here to manage it at task level usually corresponding to well identified sequences in system operation. To succeed in this transfer attention has to be paid to the fact that there are in general many trajectories for one prescribed task. So a new and completely transparent link should be established between trajectory and task controls, both acting at their own levels in the system. The corresponding double loop control is developed here, and consists mainly in an asymptotically stable functional control acting at trajectory level as a whole, and explicit in terms of main system power bounds guaranteeing robustness inside a ball the size of which is the manifold generated by all system trajectories for task accomplishment. At higher level a new decision control based on trajectory utility for succeeding in the task is proposed, the role of which is to maintain system dynamics inside the selected trajectory manifold corresponding to task. With this two step control, human operator role is eased and can be more oriented toward higher coordination and maintenance management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.B Kadomtsev (1992) Self Organization and Transport in Tokamak Plasma, Plasma Phys. and Nucl. Fus., 34(13):1931–1938

    Article  Google Scholar 

  2. P. Bautay, I.M. Janosi (1992) Self Organization and Anomalous Diffusion, Physica A, 185(1–4):11–18

    Google Scholar 

  3. E. Ben Jacob, H. Schmueli, O. Shochet, A. Tannenbaum (1992) Adaptive Self Organization during Growth of Bacterial Colonies, Physica A, 187(3–4):378–424

    Article  Google Scholar 

  4. W. Ebeling (1993) Entropy and Information in Processes of Self Organization: Uncertainty and Predictability, Physica A, 194(1–4):563–575

    Article  Google Scholar 

  5. S.Camazine, J.L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau (2002) Self organization in Biological Systems, Princeton Univ. Press, Princeton, New-Jersey

    Google Scholar 

  6. J. Holland(1995) Hidden Order: How Adaptation Builds Complexity, Helix Books, Addison Wesley, New-York

    Google Scholar 

  7. M. Waldrop (1993) Complexity: the Emerging Science at the Edge of Order and Chaos, Touchstone, NY

    Google Scholar 

  8. S. Kauffman (1993) At Home in the Universe: the Search for Laws of Self organization and Complexity, Oxford Univ. Press, New-York

    Google Scholar 

  9. M.E.J. Newman (1997) Evidence of Self Criticality in Evolution, Physica D, 107(2–4):293–296

    Article  Google Scholar 

  10. Yu.L. Klimontovitch (2002) Criteria for Self Organization, Chaos, Solitons and Fractals, 5(10):1985–1995

    Article  Google Scholar 

  11. S. Nolfi, D. Floreano (2000) Evolutionary Robotics: the Biology, Intelligence and Technology of Self-organizing Machines, The MIT Press, Cambridge, Mass.

    Google Scholar 

  12. M. Cotsaftis (2003) Popov Criterion Revisited for Other Nonlinear Systems, Proc. ISIC 03 (International Symposium on Intelligent Control), Oct 5–8, Houston, USA

    Google Scholar 

  13. M. Cotsaftis(1997) Comportement et Contrôle des Systèmes Complexes, Diderot, Paris

    MATH  Google Scholar 

  14. P.J. Antsaklis, K.M. Passino (1993) An Introduction to Intelligent and Autonomous Control, Kluwer Acad. Publ., Norwell, MA

    MATH  Google Scholar 

  15. A. Kusiak (1990) Intelligent Manufacturing Systems, Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  16. E. Bonabeau, M. Dorigo, G. Theraulaz (1999) Swarm Intelligence: from Natural to Artificial Systems, Oxford Univ. Press, New-York

    MATH  Google Scholar 

  17. P. Bak (1996) How Nature Works: the Science of Self Organized Criticality, Springer, Berlin

    MATH  Google Scholar 

  18. G. Nicolis, I. Prigogine (1997) Self Organization in Non Equilibrium Systems, Wiley, New-York

    Google Scholar 

  19. H. von Foerster, G. Zopf, (eds.) (1992): Principles of Self-Organization, Pergamon, New York

    Google Scholar 

  20. S.Y. Anyang (1998) Foundations of Complex System Theories in Economics, Evolutionnary Biology and Statistical Physics, Cambridge Univ. Press, Cambridge, Mass.; R. Albert, A-L Barabasi(2002) Statistical Mechanics of Complex Networks, Rev. of Modern Phys., 74:47

    Google Scholar 

  21. H. Nwana (1996) Software Agents: an Overview. The Knowledge Engineering Review, 11(3):205–244

    Article  Google Scholar 

  22. S. Russell, P. Norvig (1995) Artificial Inte-ligence: a Modern Approach, Prentice-Hall

    Google Scholar 

  23. A.D. Linkevich (2001) Self-organization in Intelligent Multi-agent Systems and Neural Networks, Nonlinear Phenomena in Complex Systems, Part I: 4(1):18–46; Part II: 4(3):212–249

    Google Scholar 

  24. G. Nicolis (1986) Dynamics of Hierarchical Systems, Springer, Berlin

    MATH  Google Scholar 

  25. M.J. Wooldridge, N.R. Jennings (1995) Intelligent Agents: Theory and Practice, the Knowledge Engineering Review, 10(2):115–152

    Google Scholar 

  26. M.D. Mesarovic, Y. Takahara (1975) General System Theory: Mathematical Foundations, Acad Press, New-York

    Google Scholar 

  27. A. Goriely (2001) Integrability and Nonintegrability of Dynamical Systems, World Scientific Publ.

    Google Scholar 

  28. L. O. Chua (1998) CNN: a Paradigm for Complexity, World Scientific Publ.

    Google Scholar 

  29. D.P. Bertsekas, J.N. Tsitsiklis(1996) Neuro Dynamic Programming, Athena Scientific Press, Belmont, MA

    MATH  Google Scholar 

  30. Y.Y. Chen (1989) The Global Analysis of Fuzzy Dynamical Systems, PhD Thesis, Univ. of California, Berkeley

    Google Scholar 

  31. L.X. Wang (1994) Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  32. K. Zhou, J.C. Doyle, K. Glover (1996) Robust and Optimal Control, Prentice- Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  33. G. Nicolis, I. Prigogine (1989) Exploring Complexity: an Introduction, W.H. Freeman and Co, NY

    Google Scholar 

  34. D. Kondepudi, I. Prigogine (1997) Modern Thermodynamics: from Heat Engines to Dissipative Structures, J. Wiley and Sons, NY

    Google Scholar 

  35. S.A. Kauffman (1993) The Origins of Order: Self-Organization and Selection in the Universe, Oxford Univ. Press

    Google Scholar 

  36. B. Parker (1996) Chaos in the Cosmos: the Stunning Complexity of the Universe, Plenum Press

    Google Scholar 

  37. R. Serra, M. Andretta, M. Compiani, G. Zanarini (1986) Introduction to the Physics of Complex Systems (the Mesoscopic Approach to Fluctuations, Nonlinearity and Self-Organization), Pergamon Press

    Google Scholar 

  38. G. Weiss (1999) Multi-agent Systems. A Modern Approach to Distributed Artificial Intelligence, the MIT Press, Cambridge, Mass.

    Google Scholar 

  39. H. Poincaré (1892–1899) Les Méthodes Nouvelles de la Mécanique Céleste, 3, Gauthier-Villars, Paris

    Google Scholar 

  40. A.M. Lyapounov (1907) Le Problème Général de la Stabilité du Mouvement, Ann. Fac. Sciences Toulouse

    Google Scholar 

  41. M. Cotsaftis (1998) Vision Limitation for Robot Deformation Control, Proc. 5th Intern. Conf. on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China:393

    Google Scholar 

  42. M. Cotsaftis(1996) Recent Advances in Control of Complex Systems, Survey Lecture, Proceedings ESDA’96, Montpellier, France, ASME, I:1

    Google Scholar 

  43. E. Zeidler(1986) Nonlinear Functional Analysis and its Applications, I, Springer-Verlag, New-York

    MATH  Google Scholar 

  44. M. Cotsaftis (1999) Exponentially Stable and Robust Control for Dynamical Systems, Proceedings 1999 IEEE Hong-Kong Symposium on Robotics and Control, II:623

    Google Scholar 

  45. M. Cotsaftis (1998) Robust Asymptotically Stable Control for Unknown Robotic Systems, Proceedings 1998 Symposium on ISSPR, Hong Kong, I:267

    Google Scholar 

  46. T.B. Sheridan (1992) Telerobotics, Automation and Human Supervisory Control, The MIT Press, Cambridge, Mass.

    Google Scholar 

  47. T. Sakaki, Y. Inoue, S. Tachi (1994) Tele-existence Virtual Dynamic Display Using Impedance Scaling with Physical Similarity, Proc. 1993 JSME Intern. Conf. on Advanced Mechatronics, Tokyo, Japan:127

    Google Scholar 

  48. M. Cotsaftis (1998) Application of Energy Conservation to Control of Deformable Systems, Proceedings 3rd Workshop on Systems Science and its Application, Beidaihe, China:42

    Google Scholar 

  49. J. Appell, P.P. Zabrijko (1990) Nonlinear Superposition Operators, Cambridge University Press, Mass.

    MATH  Google Scholar 

  50. G.A. Leonov, I.V. Ponomarenko, V.B. Smirnova (1996) Frequency Domain Methods for Nonlinear Analysis: Theory and Applications, World Scientific Publ., Singapore

    MATH  Google Scholar 

  51. S. Lefschetz (1965) Stability of Nonlinear Control Systems, Academic Press, NY

    MATH  Google Scholar 

  52. M.A. Aizerman, F.R. Gantmacher (1964) Absolute Stability of Regulator Systems, Holden-Day, San Franscisco

    Google Scholar 

  53. M. Brown, C. Harris: Neuro Fuzzy Adaptive Modelling and Control, Prentice Hall, Englewood Cliffs, NJ, 1994

    Google Scholar 

  54. G.E. Dullerud, F. Paganini (2000) A Course in Robust Control Theory: a Convex Approach, Springer-Verlag, New-York

    Google Scholar 

  55. J.C.S. Hsu, A.U. Meyer (1968) Modern Control Principles and Applications, McGraw-Hill, New-York

    MATH  Google Scholar 

  56. M. Cotsaftis (2002) On the Definition of Task Oriented Intelligent Control, Proceedings ISIC’02 Conf., Vancouver, Oct. 27–30

    Google Scholar 

  57. H.O.Wang, K. Tanaka, F. Griffin (1996) An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues, IEEE Trans. On Fuzzy Systems, 4(1):14–23

    Article  Google Scholar 

  58. R. Feistel, W. Ebeling (1989) Evolution of Complex Systems, Kluver, Dordrecht

    Google Scholar 

  59. H. Haken (1988) Information and Self-Organization, Springer, Berlin

    MATH  Google Scholar 

  60. Yu.L. Klimontovich (1999) Entropy, Information, and Criteria of Order in Open Systems, Nonlinear Phenomena in Complex Systems, 2(4):1–25

    MathSciNet  Google Scholar 

  61. W. Bolton (1999) Mechatronics, 2nd ed., Addison-Wesley, UK

    Google Scholar 

  62. M. Gell-Mann (1995) What is Complexity, Complexity J., 1(1):16;H. Morowitz (1995) The Emergence of Complexity,1(1):4; M. Gell-Mann (1994) The Quark and the Jaguar – Adventures in the simple and the complex, Little, Brown and Company, New-York

    MATH  MathSciNet  Google Scholar 

  63. G. Nicolis, I. Prigogine (1992) A la Rencontre du Complexe, PUF, Paris

    Google Scholar 

  64. V.G. Majda (1985) Sobolev Spaces, Springer-Verlag, New-York

    Google Scholar 

  65. M. Hirsch, C. Pugh, M. Shub(1977) Invariant Manifolds, Lecture Notes in Math. 583, Springer-Verlag, Berlin

    MATH  Google Scholar 

  66. M. Cotsaftis (1997) "Global Control of Flexural and Torsional Deformations of One-Link Mechanical System", Kybernetika, 33(1):75

    MATH  MathSciNet  Google Scholar 

  67. S. Arimoto (1996): Control Theory of Nonlinear Mechanical Systems: a Passivity Based and Circuit Theoretic Approach, Oxford Univ. Press, Oxford, UK

    MATH  Google Scholar 

  68. J.H. Burl (1999) Linear Optimal Control, H2 and H Methods, Addison- Wesley Longman, Menlo Park, CA

    Google Scholar 

  69. R.C. Hilborn (1994) Chaos and Nonlinear Dynamics, Oxford Univ. Press, Oxford, UK

    MATH  Google Scholar 

  70. T. Kapitaniak (1998) Chaos for Engineers: Theory, Applications and Control, Springer, Berlin

    MATH  Google Scholar 

  71. I. Prigogine (1993) Les Lois du Chaos, Nouvelle Bibliothèque Scienti.que, Flammarion, Paris

    Google Scholar 

  72. D.R. Smart (1980) Fixed Point Theorems, Cambridge Univ. Press, Mass.

    MATH  Google Scholar 

  73. R. Badii and A. Politi (1997) Complexity: Hierarchical Structures and Scaling in Physics, Cambridge University Press, Cambridge, Mass.

    MATH  Google Scholar 

  74. B. Goodwin (1994) How the Leopard Changed Its Spots: The Evolution of Complexity, Weidenfield and Nicholson, London

    Google Scholar 

  75. S. Johnson(2001) Emergence, Penguin, New-York

    Google Scholar 

  76. S. Wolfram(1994) Cellular Automata and Complexity, Collected Papers, Addison-Wesley

    MATH  Google Scholar 

  77. F.E. Yates, ed. (1987) Self-Organizing Systems: The Emergence of Order, Plenum Press

    Google Scholar 

  78. R.K. Standish (2004) On Complexity and Emergence, Complexity International, 9:1–6

    MathSciNet  Google Scholar 

  79. G. Parisi: Complex Systems: a Physicist’s Viewpoint, Internet arxiv:condmat/ 0205297

    Google Scholar 

  80. C.R. Shalizi: Methods and Techniques of Complex Systems Science: an Overview, Internet arxiv:nlin.AO/0307015

    Google Scholar 

  81. R. Axelrod, M.D. Cohen (1999) Harnessing Complexity: Organizational Implications of a Scientific Frontier, Free Press, New-York

    Google Scholar 

  82. H.C. von Baeyer (1998) Maxwell’s Demon, Random House

    Google Scholar 

  83. S. Chandrasekhar (1943) Stochastic Problems in Physics and Astronomy, Rev. Mod. Phys., 15(1):1–89

    Article  MATH  MathSciNet  Google Scholar 

  84. B. Kosko (1991) Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence, Prentice-Hall, Englewood Cliffs, NJH.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Cotsaftis, M. (2006). From Trajectory Control to Task Space Control – Emergence of Self Organization in Complex Systems. In: Aziz-Alaoui, M., Bertelle, C. (eds) Emergent Properties in Natural and Artificial Dynamical Systems. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-34824-7_1

Download citation

Publish with us

Policies and ethics