Skip to main content

A New Model Describes an Aqueous Outflow Pump and Explores Causes of Pump Failure in Glaucoma

  • Chapter
Glaucoma

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

1.10 Conclusion

This chapter provides a summary of evidence that supports the presence of a pumping mechanism that returns aqueous to the vascular system. The aqueous pumping mechanism controls normal flow and pressure. The pumping mechanism fails in glaucoma. Clinical and laboratory evidence point to reduced trabecular movement and persistent SC closure as mechanisms causing pump failure. An intrinsic abnormality of the composition of trabecular tissues may alter normal distention and recoil. Extrinsic factors that may also lead to SC closure are altered shape of the limbal region, altered flexibility of the limbus at the corneoscleral junction, and alterations in ciliary body tension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ascher KW. Local pharmacologic effects on aqueous veins. Am J Ophthalmol 1942;25:1301.

    Google Scholar 

  2. Ascher KW. Aqueous veins. Am J Ophthalmol 1942;25:31.

    Google Scholar 

  3. Ascher KW. Physiologic importance of the visible elimination of intraocular fluid. Am J Ophthalmol 1942;25:1174–1209.

    Google Scholar 

  4. Ascher KW. The aqueous veins, vol. 1. Springfield: Charles C. Thomas, 1961; 251.

    Google Scholar 

  5. Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts, part I. Br J Ophthalmol 1951;35:291.

    PubMed  CAS  Google Scholar 

  6. Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts, part II, Aqueous veins. Br J Ophthalmol 1952;36:265.

    PubMed  CAS  Google Scholar 

  7. Barany EH, Linner E, Lutjen-Drecoll E, et al. Structural and functional effects of trabeculectomy in cynomolgus monkeys. I. Light microscopy. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1972;184(1):1–28.

    Article  PubMed  CAS  Google Scholar 

  8. Cambiaggi A. Effeto della jaluronidasi sulla pressone intraocular e sull’asetto della vene dell’accqueo. Boll Soc Biol Sperimentale 1958;34:1.

    Google Scholar 

  9. De Vries S. De Zichtbare Afvoer Van Het Kamerwater, 1st edn. Amsterdam: Drukkerij Kinsbergen, 1947;90.

    Google Scholar 

  10. De Vries S, De zichtbare Afvoer von het Kamerwater. Amsterdam: Drukkerij Kinsbergen, 1947.

    Google Scholar 

  11. Ellingsen BA, Grant WM. Influence of intraocular pressure and trabeculotomy on aqueous outflow in enucleated monkey eyes. Invest Ophthalmol 1971;10(9):705–709.

    PubMed  CAS  Google Scholar 

  12. Ellingsen BA, Grant WM. The relationship of pressure and aqueous outflow in enucleated human eyes. Invest Ophthalmol 1971;10(6):430–437.

    PubMed  CAS  Google Scholar 

  13. Ellingsen BA, Grant WM. Trabeculotomy and sinusotomy in enucleated human eyes. Invest Ophthalmol 1972;11(1):21–28.

    PubMed  CAS  Google Scholar 

  14. Flocks M, Zweng HC. Studies on the mode of action of pilocarpine on aqueous outflow. Am J Ophthalmol 1957;44(Pt. II):380.

    PubMed  CAS  Google Scholar 

  15. Francois J. La Gonioscopie, 1948. Fonteyn, Louvain, Belgium.

    Google Scholar 

  16. Goldmann H. Abfluss des Kammerwassers beim Menschen. Ophthalmologica 1946;111:146–152.

    Article  CAS  PubMed  Google Scholar 

  17. Goldmann H. Weitere Mitteilung über den Abfluss des Kammerwassers beim Menschen. Ophthalmologica 1946;112:344–346.

    CAS  PubMed  Google Scholar 

  18. Goldmann H. Uber Abflussdruck und Glasstabphanomen. Pathogenese des einfachen Glaukoms. Ophthalmologica 1948;116:193.

    Article  Google Scholar 

  19. Goldmann H. Pressure in the canal of Schlemm. Br J Ophthalmol 1955;39:764.

    PubMed  CAS  Google Scholar 

  20. Grant WM, Trotter RR. Open-angle glaucoma. AMA Arch Ophthal 1953;50:125.

    CAS  Google Scholar 

  21. Grant WM. Further studies on facility of flow through the trabecular meshwork. Arch Ophthalmol 1958;60:523–533.

    CAS  Google Scholar 

  22. Grant WM. Experimental aqueous perfusion in enucleated human eyes. Arch Ophthalmol 1963;69:783–801.

    PubMed  CAS  Google Scholar 

  23. Grierson I, Lee WR. Junctions between the cells of the trabecular meshwork. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1974;192(2):89–104.

    Article  PubMed  CAS  Google Scholar 

  24. Grierson I, Lee WR, Abraham S, et al. Associations between the cells of the walls of Schlemm’s canal. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1978;208(1–3):33–47.

    Article  PubMed  CAS  Google Scholar 

  25. Hodgson TH, MacDonald RK. Slitlamp studies on the flow of aqueous humor. Br J Ophthalmol 1954;38:266.

    PubMed  CAS  Google Scholar 

  26. Hogan MJ, Alvarado J, Weddell JE. Histology of the human eye, and atlas and textbook. Philadelphia: Saunders, 1971.

    Google Scholar 

  27. Humphrey JD. Cardiovascular solid mechanics: cells, tissues, and organs, 1st edn. Berlin Heidelberg New York: Springer, 2002;749.

    Google Scholar 

  28. Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 2002;91(10):877–887.

    Article  PubMed  CAS  Google Scholar 

  29. Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 2003;116(Pt 8):1397–1408.

    Article  PubMed  CAS  Google Scholar 

  30. Johnstone MA. Pressure-dependent changes in configuration of the endothelial tubules of Schlemm’s canal. Am J Ophthalmol 1974;78(4):630–638.

    PubMed  CAS  Google Scholar 

  31. Johnstone MA. Pressure-dependent changes in nuclei and the process origins of the endothelial cells lining Schlemm’s canal. Invest Ophthalmol Vis Sci 1979;18(1):44–51.

    PubMed  CAS  Google Scholar 

  32. Johnstone MA. Glaucoma and the aqueous out-flow channels. Trans Pacific Coast OtoOphthalmol Soc 1979;60:153.

    Google Scholar 

  33. Johnstone MA. The morphology of the aqueous outflow channels. In: Drance SM, ed. Glaucoma: applied pharmacology in medical treatment. New York: Grune and Stratton, 1984.

    Google Scholar 

  34. Johnstone MA. The aqueous outflow system as a mechanical pump: evidence from examination of tissue and aqueous movement in human and nonhuman primates. J Glaucoma 2004;13:421–438.

    Article  PubMed  Google Scholar 

  35. Johnstone MA, Grant WM. Pressure-dependent changes in structure of the aqueous outflow system in human and monkey eyes. Am J Ophthalmol 1973;75:365–383.

    PubMed  CAS  Google Scholar 

  36. Johnstone MA, Grant WM. Microsurgery of Schlemm’s canal and the aqueous outflow system. Am J Ophthalmol 1973;76:906–917.

    PubMed  CAS  Google Scholar 

  37. Johnstone MA, Tanner D, Chau B, et al. Concentration-dependent morphologic effects of cytochalasin B in the aqueous outflow system. Invest. Ophthalmol Vis Sci 1980;19(7):835–841.

    PubMed  CAS  Google Scholar 

  38. Kleinert H. The compensation maximum: a new glaucoma sign in aqueous veins. Arch Ophthalmol 1951;46:618.

    CAS  Google Scholar 

  39. Kronfeld PC. Further gonioscopic studies on the canal of Schlemm. AMA Arch Ophthalmol 1949;41:393.

    CAS  Google Scholar 

  40. Kronfeld PC, McGarry, HT, Smith HE. Gonioscopic study on the canal of Schlemm. Am J Ophthal 1942;25:1163–1173. Discussion of paper by Manuel Troncoso: pp 1170–1171.

    Google Scholar 

  41. Kronfeld PC, McGarry HT, Smith HE. Gonioscopic study on the canal of Schlemm. Am J Ophthalmol 1942;25:1163.

    Google Scholar 

  42. Morgan WH, Hazelton ML, Azar SL, et al. Retinal venous pulsation in glaucoma and glaucoma suspects. Ophthalmology 2004;111(8):1489–1494.

    Article  PubMed  Google Scholar 

  43. Moses RA. Circumferential flow in Schlemm’s canal. Am J Ophthalmol 1979;88(3 Pt 2):585–591.

    PubMed  CAS  Google Scholar 

  44. Rosenquist R, Epstein D, Melamed S, et al. Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy. Curr Eye Res 1989;8(12):1233–1240.

    PubMed  CAS  Google Scholar 

  45. Schirmer KE. Reflux of blood in the canal of Schlemm quantitated. Can J Ophthalmol 1969;4:40–44.

    PubMed  CAS  Google Scholar 

  46. Schirmer KE. Gonioscopic assessment of blood in Schlemm’s canal. Correlation with glaucoma tests. Arch Ophthalmol 1971;85(3):263–267.

    PubMed  CAS  Google Scholar 

  47. Smit BA, Johnstone MA. Effects of viscoelastic injection into Schlemm’s canal in primate and human eyes: potential relevance to viscocanalostomy. Ophthalmology 2002;109:786–792.

    Article  PubMed  Google Scholar 

  48. Smith R. Blood in the canal of Schlemm. Br J Ophthalmol 1956;40:358–365.

    PubMed  CAS  Google Scholar 

  49. Suson EB, Schultz RO. Blood in Schlemm’s canal in glaucoma suspects. A study of the relationship between blood-filling pattern and outflow facility in ocular hypertension. Arch Ophthalmol 1969;81(6):808–812.

    PubMed  CAS  Google Scholar 

  50. Thomassen TL. On aqueous veins. Acta Ophthalmol 1947;25:369–378.

    Article  Google Scholar 

  51. Thomassen TL. The glass-rod test in glaucomatous eyes. Br J Ophthalmol 1949;35:773.

    Google Scholar 

  52. Van Buskirk EM. Changes in facility of aqueous outflow induced by lens depression and intraocular pressure in excised human eyes. Am J Ophthalmol 1976;82(5):736–740.

    PubMed  Google Scholar 

  53. Van Buskirk EM. Anatomic correlates of changing aqueous outflow facility in excised human eyes. Invest Ophthalmol Vis Sci 1982;22(5):625–632.

    PubMed  Google Scholar 

  54. Van Buskirk EM, Grant WM. Lens depression and aqueous outflow in enucleated primate eyes. Am J Ophthalmol 1973;76(5):632–640.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnstone, M.A. (2006). A New Model Describes an Aqueous Outflow Pump and Explores Causes of Pump Failure in Glaucoma. In: Grehn, F., Stamper, R. (eds) Glaucoma. Essentials in Ophthalmology. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34773-9_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-34773-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26220-6

  • Online ISBN: 978-3-540-34773-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics