Skip to main content

Development and Developmental Disorders of the Brain Stem

  • Chapter
Clinical Neuroembryology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Kremer H, Kuyt LP, van den Helm B, van Reen M, Leunissen JAM, Hamel BC, Jansen C, Mariman ECM, Frants RR, Padberg GW (1996) Localization of a gene for Möbius syndrome to chromosome 3q by linkage analysis in a Dutch family. Hum Mol Genet 5:1367–1371

    PubMed  CAS  Google Scholar 

  • van Buskirk C (1945) The seventh nerve complex. J Comp Neurol 82:303–333

    Google Scholar 

  • Verzijl HTFM, van der Zwaag B, Lammens M, ten Donkelaar HJ, Padberg GW (2005) The neuropathology of hereditary congenital facial palsy versus Möbius syndrome. Neurology 64:649–653

    PubMed  CAS  Google Scholar 

References

  • Möbius PJ (1888) Ãœber angeborene doppelseitige Abducens-Facialis-Lähmung. Münch Med Wochenschr 35:91–94

    Google Scholar 

  • Verzijl HFTM, van der Zwaag B, Cruysberg JRM, Padberg GW (2003) Möbius syndrome redefined. A syndrome of rhombencephalic maldevelopment. Neurology 61:327–333

    PubMed  Google Scholar 

References

  • Wagenaar M, Draaijer P, Meek H, ten Donkelaar HJ, Wesseling P, Kimberling W, Cremers C (1999) The cochlear nuclei in two patients with Usher syndrome type I. Int J Ped Otorhinolaryngol 50:185–195

    CAS  Google Scholar 

  • Wagenaar M, Schuknecht H, Nadol J, Benraad-van Rens MJL, Kimberling WJ, Cremers CWRJ (2000) Histopathology of the temporal bone in Usher syndrome type I. Arch Otolaryngol Head Neck Surg 126:1018–1023

    PubMed  CAS  Google Scholar 

References

  • Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, Weil D, Cruaud C, Sahly I, Leibovici M, et al. (1997) A human homologue of the Drosophila eyes absent gene underlies branchiooto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet 15:157–164

    PubMed  CAS  Google Scholar 

  • Acampora D, Gulisano M, Broccoli V, Simeone A (2001) Otx genes in brain morphogenesis. Prog Neurobiol 64:69–95

    PubMed  CAS  Google Scholar 

  • Aicardi J (1998) Diseases of the Nervous System in Childhood, 2nd ed. Mac Keith, London

    Google Scholar 

  • Alexander G (1904) Zur Pathologie und pathologischen Anatomie der kongenitalen Taubheit. Arch Ohr-Nase-Kehlkopfheilkd 61:183–219

    Google Scholar 

  • Alexandre P, Wassef M (2003) The isthmic organizer links anteroposterior and dorsoventral patterning in the mid/hindbrain by generating roof plate structures. Development 130:5331–5338

    PubMed  CAS  Google Scholar 

  • Allanson J (2004) Genetic hearing loss associated with external ear anomalies. In: Toriello HV, Reardon W, Gorlin RJ (eds) Hereditary Hearing Loss and Its Syndromes, 2nd ed. Oxford University Press, Oxford, pp 83–125

    Google Scholar 

  • Altman J, Bayer SA (1982) Development of the cranial nerve ganglia and related nuclei in the rat. Adv Anat Embryol Cell Biol 74:1–90

    PubMed  CAS  Google Scholar 

  • Altmann F (1951) Malformations of the auricle and the external auditory meatus. Arch Otolaryngol 54:115–139

    CAS  Google Scholar 

  • Anson BJ, Davies J (1980) Embryology of the ear: Developmental anatomy of the ear. In: Paparella MM, Shumrick DA, Meyerhoff WL, Seid AB (eds) Otolaryngology, 2nd ed. Saunders, Philadelphia, PA, pp 3–25

    Google Scholar 

  • Anson BJ, Bast TH, Cauldwell EW (1948) The development of the auditory ossicles, the otic capsule and the extracapsular tissues. Ann Otol Rhinol Laryngol 57:603–632

    Google Scholar 

  • Anson BJ, Hanson JS, Richany SF (1960) Early embryology of the auditory ossicles and associated structures in relation to certain anomalies observed clinically. Ann Otol Rhinol Laryngol 69:427–447

    PubMed  CAS  Google Scholar 

  • Ashwell KW, Watson CR (1983) The development of facial motoneurones in the mouse — neuronal death and the innervation of the facial muscles. J Embryol Exp Morphol 77:117–141

    PubMed  CAS  Google Scholar 

  • Auclair F, Valdes N, Marchand R (1996) Rhombomere-specific origin of the branchial and visceral motoneurons of the facial nerve in the rat embryo. J Comp Neurol 369:451–461

    PubMed  CAS  Google Scholar 

  • Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1995) The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner hair cells. Nat Genet 11:369–375

    PubMed  CAS  Google Scholar 

  • Baker CV, Bronner-Fraser M (2001) Vertebrate cranial placodes. I. Embryonic induction. Dev Biol 232:1–61

    PubMed  CAS  Google Scholar 

  • Barrow JR, Stadler HS, Capecchi MR (2000) Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse. Development 127:933–944

    PubMed  CAS  Google Scholar 

  • Baxter A (1971) Dehiscence of the Fallopian canal. J Laryngol Otol 85:587–594

    PubMed  CAS  Google Scholar 

  • Bayer SA, Altman J, Russo RJ, Zhang X (1995) Embryology. In: Duckett S (ed) Pediatric Neuropathology. Williams & Wilkins, Baltimore, MD, pp 54–107

    Google Scholar 

  • Beck C (1970) Duplication of the external auditory ear. HNO 18:307–308

    PubMed  CAS  Google Scholar 

  • Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Beller HJ, Lysakowski A, Zoghbi HY (1999) Math1: An essential gene for the generation of inner ear hair cells. Science 284:1837–1841

    PubMed  CAS  Google Scholar 

  • Birkenhäger R, Otto E, Schürmann MJ, Vollmer M, Ruf E-M, Maier-Lutz I, Beckmann F, Fekete A, Omran H, Feldmann D, et al. (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314

    PubMed  Google Scholar 

  • Birnholtz JC, Benacerraf BR (1983) The development of fetal hearing. Science 222:516–518

    Google Scholar 

  • Bitner-Glindzicz M (2002) Hereditary deafness and phenotyping in humans. Br Med Bull 63:73–94

    PubMed  CAS  Google Scholar 

  • Bordley JE (1973) The effect of viral infection on hearing. A state-of-the-art report with special emphasis on congenital rubella. Arch Otolaryngol 98:217

    PubMed  CAS  Google Scholar 

  • Bouwes Bavinck JN, Weaver DD (1986) Subclavian artery supply disruption sequence: Hypothesis of a vascular etiology of Poland, Klippel-Feil, and Möbius anomalies. Am J Med Genet 23:903–918

    Google Scholar 

  • Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell TM, Rubinstein JLR, Ericson J (1999) Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398:622–627

    PubMed  CAS  Google Scholar 

  • Brookhouser PE, Bordley JE (1973) Congenital rubella deafness. Pathology and pathogenesis. Arch Otolaryngol 98:252–257

    PubMed  CAS  Google Scholar 

  • Brunet J-F, Pattyn A (2002) Phox2 genes — from patterning to connectivity. Curr Opin Genet Dev 12:435–440

    PubMed  CAS  Google Scholar 

  • Büttner-Ennever JA, Akert K (1981) Medial rectus subgroups of the oculomotor nucleus and their abducens internuclear input in monkey. J Comp Neurol 197:17–27

    PubMed  Google Scholar 

  • Büttner-Ennever JA, Horn AKE (2004) Reticular formation: Eye movements, gaze and blink. In: Paxinos G, Mai JK (eds) The Human Nervous System, 2nd ed. Elsevier, Amsterdam, pp 479–510

    Google Scholar 

  • Campbell C, Cucci RA, Prasad S, Green GE, Edeal JB, Galer CE, Karniski LP, Sheffield VC, Smith RJH (2001) Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations. Hum Mutat 17:403–411

    PubMed  CAS  Google Scholar 

  • Carpenter EM, Goddard JM, Chisaka O, Manley NR, Capecchi MR (1993) Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118:1063–1075

    PubMed  CAS  Google Scholar 

  • Ceruti S, Stinckens C, Cremers C, Casselman JW (2002) Temporal bone anomalies in the branchio-oto-renal syndrome: Detailed computer tomographic and magnetic resonance imaging findings. Otol Neurootol 23:200–207

    CAS  Google Scholar 

  • Chi CL, Martinez S, Wurst W, Martin GR (2003) The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130:2633–2644

    PubMed  CAS  Google Scholar 

  • Cordes SP (2001) Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2:611–623

    PubMed  CAS  Google Scholar 

  • Counter SA (2002) Fetal and neonatal development of the auditory system. In: Lagercrantz H, Hanson M, Evrard P, Rodeck C (eds) The Newborn Brain. Neuroscience and clinical applications. Cambridge University Press, Cambridge, pp 226–251

    Google Scholar 

  • Cremers CWRJ, Delleman WJW (1988) Usher’s syndrome, temporal lobe pathology. Int J Pediatr Otolaryngol 16:23–30

    CAS  Google Scholar 

  • Cremers CWRJ, Teunissen E (1991) A classification of minor congenital ear anomalies and short-and long-term results of surgery in 104 ears. In: Charachon R, Garcia-Ibanes E (eds) Long-term Results and Indications in Otology and Otoneurosurgery. Kugler, Amsterdam, pp 11–12

    Google Scholar 

  • Cruysberg JRM, Huygen PLM (1990) Congenital monocular adduction palsy with synergistic divergence diagnosed in a young infant. Neuro-ophthalmol 10:253–256

    Google Scholar 

  • Cruysberg JRM, Mtanda AT, Duinkerke-Eerola KU, Stoelinga GBA (1986) Bilateral Duane’s retraction syndrome associated with congenital panhypopituitarism. Neuro-ophthalmol 6:165–168

    Google Scholar 

  • Cruysberg JRM, Mtanda AT, Duinkerke-Eerola KU, Huygen PLM (1989) Congenital adduction palsy and synergistic divergence; a clinical and electro-oculographic study. Br J Ophthalmol 73:68–75

    PubMed  CAS  Google Scholar 

  • Cruysberg JRM, Draaijer RW, Pinckers A, Brunner HG (1998) Congenital corneal anesthesia in children with the VACTERL association. Am J Ophthalmol 125:96–98

    PubMed  CAS  Google Scholar 

  • Deol MS (1964) The abnormalities of the inner ear in Kreisler mice. J Embryol Exp Morphol 12:475–490

    PubMed  CAS  Google Scholar 

  • deSa DJ (1997) The ear. In: Gilbert-Barness E (ed) Potter’s Pathology of the Fetus and Infant. Mosby, St. Louis, MI, pp 1522–1540

    Google Scholar 

  • Dietzel K (1961) Ãœber die Dehiszenzen des Facialiskanals. Z Laryngol Rhinol Otol 40:366–376

    PubMed  CAS  Google Scholar 

  • Doherty E, Macy M, Wang S, Dykeman C, Melanson M, Engle E (1999) CFEOM3: A new extraocular congenital fibrosis syndrome that maps to 16q24.2–q24.3. Invest Ophthalmol Vis Sci 40:1687–1694

    PubMed  CAS  Google Scholar 

  • Duane A (1905) Congenital deficiency of abduction associated with impairment of abduction, retraction movements, contractions of the palpebral fissure and oblique movements of the eye. Arch Ophthalmol 34:133–159

    Google Scholar 

  • Engle EC (2002) Applications of molecular genetics to the understanding of congenital ocular motility disorders. Ann NY Acad Sci 956:55–63

    PubMed  CAS  Google Scholar 

  • Engle EC, Leigh RJ (2002) Genes, brainstem development, and eye movements. Neurology 59:304–305

    PubMed  Google Scholar 

  • Engle EC, Castro AE, Macy ME, Knoll JHM, Beggs AH (1997) A gene for isolated congenital ptosis maps to a 3cM region within 1p32–p34.1. Am J Hum Genet 60:1150–1157

    PubMed  CAS  Google Scholar 

  • Ensfors P, Vandewater T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164

    Google Scholar 

  • Erickson SL, O’Shea KS, Ghaboosi N, Loterro L, Frantz G, Bauer M, Liu LH, Moore MW (1997) ErbB3 is required for normal cerebellar and cardiac development: A comparison with ErbB2-and neuregulin-deficient mice. Development 124:4999–5011

    PubMed  CAS  Google Scholar 

  • Erkman L, McEvilly RJ, Luo L, Ryan AK, Hooshmand F, O’Connell SM, Keithley EM, Rapaport DH, Ryan AF, Rosenfeld MG (1996) Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381:603–606

    PubMed  CAS  Google Scholar 

  • Fekete DM (1999) Development of the vertebrate ear: Insights from knockouts and mutants. Trends Neurosci 22:263–269

    PubMed  CAS  Google Scholar 

  • Filiano JJ, Kinney HC (1992) Arcuate nucleus hypoplasia in the sudden infant death syndrome. J Neuropathol Exp Neurol 51:394–405

    PubMed  CAS  Google Scholar 

  • Filiano JJ, Kinney HC (1994) A perspective on neuropathological findings in victims of the sudden infant death syndrome: The triple-risk model. Biol Neonate 65:194–197

    PubMed  CAS  Google Scholar 

  • Filiano JJ, Choi JC, Kinney HC (1990) Candidate cell populations for respiratory chemosensitive fields in the human infant medulla. J Comp Neurol 293:448–465

    PubMed  CAS  Google Scholar 

  • Fisch L (1959) Deafness as part of an hereditary syndrome. J Laryngol Otol 73:355–382

    PubMed  CAS  Google Scholar 

  • Fitch N, Lindsay JR, Srolovitz H (1976) The temporal bone in the preauricular pit, cervical fistula, hearing loss syndrome. Ann Otol Rhinol Laryngol 85:268–275

    PubMed  CAS  Google Scholar 

  • Flock Ã… (1980) Contractile proteins in hair cells. Hearing Res 2:411–412

    CAS  Google Scholar 

  • Fode C, Gradwohl G, Morin X, Dierich A, LeMeur M, Goridis C, Guillemot F (1998) The bHLH protein NEUROGENIN 2 is determination factor for epibranchial placode-derived sensory neurons. Neuron 20:483–494

    PubMed  CAS  Google Scholar 

  • Folgering H, Kuyper F, Kille JF (1979) Primary alveolar hypoventilation (Ondine’s curse syndrome) in an infant without external arcuate nucleus: Case report. Bull Eur Physiopathol Respir 15:659–665

    PubMed  CAS  Google Scholar 

  • Fowler EP (1961) Variations in the temporal bone course of the facial nerve. Laryngoscope 71:937–946

    PubMed  Google Scholar 

  • Franz H (1959) Ãœber Gehörorgansduplikaturen. Z Laryngol Rhinol 38:16–22

    CAS  Google Scholar 

  • Friedman TB, Griffith AJ (2003) Human nonsyndromic sensorineural deafness. Annu Rev Genomics Hum Genet 4:341–402

    PubMed  CAS  Google Scholar 

  • Friedmann I, Arnold W (1993) Pathology of the Ear. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Fritzsch B, Silos-Santiago I, Bianchi LM, Farinas I (1997) The role of neurotrophic factors in regulating the development of inner ear development. Trends Neurosci 20:159–164

    PubMed  CAS  Google Scholar 

  • Gasser RF (1967) The development of the facial nerve in man. Ann Otol Rhinol Laryngol 76:37–56

    PubMed  CAS  Google Scholar 

  • Gasser RF, May M (2000) Embryonic development. In: May M, Schaitkin BM (eds) The Facial Nerve, May’s 2nd ed. Thieme, New York, pp 1–17

    Google Scholar 

  • Gavalas A, Studer M, Lumsden A, Rijli FM, Krumlauf R, Chambon P (1998) Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 125:1123–1136

    PubMed  CAS  Google Scholar 

  • Gavalas A, Ruhrberg C, Livet J, Henderson CE, Krumlauf R (2003) Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development 130:5663–5679

    PubMed  CAS  Google Scholar 

  • Gerhardt HJ, Otto HD (1970) Steigbügelmissbildungen. Acta Otolaryngol (Stockholm) 70:35–44

    CAS  Google Scholar 

  • Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, Beisel KW, Steel KP, Brown SD (1995) A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374:62–64

    PubMed  CAS  Google Scholar 

  • Gimsing S, Dyrmose J (1986) Branchio-oto-renal dysplasia in three families. Ann Otol Rhinol Laryngol 95:421–426

    PubMed  CAS  Google Scholar 

  • Goddard JM, Rossel M, Manley NR, Capecchi MR (1996) Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve. Development 122:3217–3228

    PubMed  CAS  Google Scholar 

  • Gorlin RJ, Cohen MM Jr, Levin LS (1990) Syndromes of the Head and Neck, 3rd ed. Oxford University Press, New York, pp 666–671

    Google Scholar 

  • Gorlin RJ, Cohen MM Jr, Hennekam RCM, eds (2001) Syndromes of the Head and Neck, 4th ed. Oxford University Press, Oxford

    Google Scholar 

  • Govaerts PJ, Cremers CWRJ, Marquet TF, Offeciers FE (1993) The persistent stapedial artery: Does it prevent successful surgery? Ann Otol Rhinol Laryngol 102:724–728

    PubMed  CAS  Google Scholar 

  • Griffith AJ, Friedman TB (2002) Autosomal and X-linked auditory disorders. In: Keats BJB, Popper AN, Fay RR (eds) Handbook of Auditory Research, Vol 14: Genetics and Auditory Disorders. Springer, Berlin Heidelberg New York, pp 121–227

    Google Scholar 

  • Groves AK, Bronner-Fraser M (2000) Competence, specification and commitment in otic placode induction. Development 127:3489–3499

    PubMed  CAS  Google Scholar 

  • Guthrie S (1996) Patterning the hindbrain. Curr Opin Neurobiol 6:41–48

    PubMed  CAS  Google Scholar 

  • Gutowski NJ, Bosley TM, Engle E (2003) Workshop Report 110th ENMC International Workshop: The congenital cranial dysinnervation disorders (CCDDs). Neuromusc Disord 13:573–578

    PubMed  CAS  Google Scholar 

  • Hamilton WJ, Mossman HW (1972) Hamilton, Boyd and Mossman’s Human Embryology. Prenatal development of form and function, 4th ed. Heffer, Cambridge

    Google Scholar 

  • Hanson JR, Anson BJ, Strickland EM (1962) Branchial sources of the auditory ossicles in man. Arch Otolaryngol 76:100–122, and 200–215

    PubMed  Google Scholar 

  • Hardy JB (1973) Fetal consequences of maternal viral infections in pregnancy. Arch Otolaryngol 98:218–227

    PubMed  CAS  Google Scholar 

  • Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A, Lemort N, Goossens M, Wegner M (1998) Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci USA 95:5161–5165

    PubMed  CAS  Google Scholar 

  • Hinrichsen KV (1990) Peripheres Nervensystem. In: Hinrichsen KV (Hrsg) Humanembryologie. Springer Verlag, Berlin Heidelberg New York, pp 449–475

    Google Scholar 

  • His W Jr (1889) Zur Entwicklungsgeschichte des Acustico-Facialisgebietes beim Menschen. Arch Anat Physiol Anat Abt Suppl:1–28

    Google Scholar 

  • Hochstetter F (1948) Entwicklungsgeschichte der Ohrmuschel und des äusseren Gehörganges des Menschen. Denkschr Akad Wiss Wien Math-Naturwiss Kl 108:1–50

    Google Scholar 

  • Holme RH, Steel KP (1999) Genes involved in deafness. Curr Opin Genet Dev 9:309–314

    PubMed  CAS  Google Scholar 

  • Holzschuh J, Hauptmann G, Driever W (2003) Genetic analysis of the roles of Hh, FGF8, and nodal signaling during catecholaminergic system development in the zebrafish brain. J Neurosci 23:5507–5519

    PubMed  CAS  Google Scholar 

  • Hotchkiss MG, Miller NR, Clark AW, Green WR (1980) Bilateral Duane’s retraction syndrome: A clinico-pathologic case report. Arch Ophthalmol 98:870–874

    PubMed  CAS  Google Scholar 

  • Hoth CF, Milunsky A, Lipsky N, Sheffer R, Clarren SK, Baldwin CT (1993) Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet 53:455–462

    Google Scholar 

  • House HP, Patterson ME (1964) Persistent stapedial artery: Report of two cases. Trans Am Acad Ophthalmol Otolaryngol 68: 644–646

    PubMed  CAS  Google Scholar 

  • Igarashi Y, Ishii T (1980) Embryonic development of the human organ of Corti: Electron microscopic study. Int J Paediatr Otorhinolaryngol 2:51–62

    CAS  Google Scholar 

  • Irving C, Mason I (2000) Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 127:177–188

    PubMed  CAS  Google Scholar 

  • Jacob J, Guthrie S (2000) Facial visceral motor neurons display specific rhombomere origin and axon pathfinding behavior in the chick. J Neurosci 20:7664–7671

    PubMed  CAS  Google Scholar 

  • Jacobs MJ (1970) The development of the human motor trigeminal complex and accessory facial nucleus and their topographic relations with the facial and abducens nuclei. J Comp Neurol 138:161–194

    PubMed  CAS  Google Scholar 

  • Jen J, Coulin C, Bosley TM, Salih MAM, Sabatti C, Nelson SF, Baloh RW (2002) Familial horizontal gaze with progressive scoliosis (HGPS) maps to chromosome 11q23–25. Neurology 59:432–435

    PubMed  Google Scholar 

  • Johansson B, Wedenberg E, Weston B (1964) Measurement of tone response by the human fetus. Acta Otolaryngol 57:188–192

    PubMed  CAS  Google Scholar 

  • Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet 12:15–20

    PubMed  CAS  Google Scholar 

  • Joyner AL (2002) Establishment of anterior-posterior and dorsalventral pattern in the early central nervous system. In: Rossant J, Tam PPL (eds) Mouse Development. Patterning, morphogenesis, and organogenesis. Academic, San Diego, CA, pp 107–126

    Google Scholar 

  • Kalatzis V, Sahly I, El-Amraoui A, Petit C (1998) Eya1 expression in the developing ear and kidney: Towards the understanding of the pathogenesis of Branchio-Oto-Renal (BOR) syndrome. Dev Dyn 213:486–499

    PubMed  CAS  Google Scholar 

  • Kanagasuntheram R (1967) A note on the development of the tubotympanic recess in the human embryo. J Anat (Lond) 101:731–741

    PubMed  CAS  Google Scholar 

  • Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjed SA, Rodriguez-Soriano J, Santos F, Cremers CWRJ, Di Pietro A, et al. (1999) Mutations in the gene encoding B1 subunit of H+-AT-Pase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90

    PubMed  CAS  Google Scholar 

  • Karmody CS, Annino DJ Jr (1995) Embryology and anomalies of the external ear. Facial Plast Surg 11:251–256

    PubMed  CAS  Google Scholar 

  • Keats BJB, Corey DP (1999) The Usher syndromes. Am J Med Genet 89:158–166

    PubMed  CAS  Google Scholar 

  • Kemperman MH, Stinckens C, Kumar S, Huygen PLM, Joosten FBM, Cremers CWRJ (2001) Progressive, fluctuant hearing loss, an enlarged vestibular aqueduct and cochlear hypoplasia in the BOR syndrome. Otol Neurotol 22:637–643

    PubMed  CAS  Google Scholar 

  • Kemperman MH, Stinckens C, Kumar S, Joosten FBM, Huygen PLM, Cremers CWRJ (2002a) The branchio-oto-renal syndrome. Adv Oto-Rhino-Laryngol 61:192–200

    CAS  Google Scholar 

  • Kemperman MH, Koch SMP, Joosten FBM, Kumar S, Huygen PLM, Cremers CWRJ (2002b) Inner ear anomalies are frequent but non-obligatory features of the branchio-oto-renal syndrome. Arch Otolaryngol Head Neck Surg 128:1033–1038

    PubMed  Google Scholar 

  • Kemperman MH, Hoefsloot LH, Cremers CWRJ (2002c) Hearing loss and connexin 26. J R Soc Med 95:171–177

    PubMed  CAS  Google Scholar 

  • Kiernan AE, Steel KP, Fekete DM (2002) Development of the mouse inner ear. In: Rossant J, Tam PPL (eds) Mouse Development. Patterning, morphogenesis, and organogenesis. Academic, San Diego, CA, pp 539–566

    Google Scholar 

  • Kimberling WJ (2004) Genetic hearing loss associated with eye disorders. In:Toriello HV, Reardon W, Gorlin RJ (eds) Hereditary Hearing Loss and Its Syndromes, 2nd ed. Oxford University Press, Oxford, pp 126–165

    Google Scholar 

  • Kimberling WJ, Möller C (1995) Clinical and molecular genetics of Usher syndrome. J Am Acad Audiol 6:63–72

    PubMed  CAS  Google Scholar 

  • Kohlhase J, Wischermann A, Reichenbach H, Froster U, Engel W (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18:81–83

    PubMed  CAS  Google Scholar 

  • Kremer H, Kuyt LP, van den Helm B, van Reen M, Leunissen JAM, Hamel BC, Jansen C, Mariman ECM, Frants RR, Padberg GW (1996) Localization of a gene for Möbius syndrome to chromosome 3q by linkage analysis in a Dutch family. Hum Mol Genet 5:1367–1371

    PubMed  CAS  Google Scholar 

  • Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201

    PubMed  CAS  Google Scholar 

  • Kuemerle B, Zanjani H, Joyner A, Herrup K (1997) Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. J Neurosci 17:7881–7889

    PubMed  CAS  Google Scholar 

  • Kuhlman KA, Burns KA, Depp R, Sabbagha RE (1988) Ultrasound imaging of normal fetal response to external vibratory acoustic stimulation. Am J Obstet Gynecol 158:47–51

    PubMed  CAS  Google Scholar 

  • Kumar D (1990) Moebius syndrome. J Med Genet 27:122–126

    PubMed  CAS  Google Scholar 

  • Lammens M, Moerman P, Fryns JP, Schröder JM, Spinnewyn D, Casaer P, Dom R (1998) Neuropathological findings in Moebius syndrome. Clin Genet 54:136–141

    PubMed  CAS  Google Scholar 

  • Lecanuet J-P, Schaal B (1996) Fetal sensory competencies. Eur J Obstet Gynecol 68:1–23

    CAS  Google Scholar 

  • Lee K-F, Simon H, Chen H, Bates B, Hung M-C, Hauser C (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378:394–398

    PubMed  CAS  Google Scholar 

  • Leigh R, Zee D (1999) The Neurology of Eye Movements, 3rd ed. Oxford University Press, New York

    Google Scholar 

  • Lemire RJ, Loeser JD, Leech RW, Alvord EC Jr (1975) Normal and Abnormal Development of the Human Nervous System. Harper & Row, Hagerstown, MD

    Google Scholar 

  • Lemire RJ, Beckwith JB, Warkany J (1978) Anencephaly. Raven, New York

    Google Scholar 

  • Lengyel D, Zaunbauer W, Keller E, Gottlob I (2000) Möbius syndrome: MRI findings in three cases. J Pediatr Ophthalmol Strabismus 37:305–308

    PubMed  CAS  Google Scholar 

  • Leong S, Ashwell KW (1997) Is there a zone of vascular vulnerability in the fetal brainstem? Neurotoxicol Teratol 19:265–275

    PubMed  CAS  Google Scholar 

  • Liebreich R (1861) Abkunft und Ehen unter Blutsverwandten als Grund von Retinitis pigmentosa. Dtsch Klin 13:53–55

    Google Scholar 

  • Liu A, Joyner AL (2001) Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 24:869–896

    PubMed  CAS  Google Scholar 

  • Lumsden A (1990) The cellular basis of segmentation in the developing hindbrain. Trends Neurosci 13:329–335

    PubMed  CAS  Google Scholar 

  • Lumsden A (2004) Segmentation and compartition in the early avian hindbrain. Mech Dev 121:1081–1088

    PubMed  CAS  Google Scholar 

  • Lumsden A, Keynes R (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337:424–428

    PubMed  CAS  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115

    PubMed  CAS  Google Scholar 

  • Ma Q, Chen ZF, Del Braco Barrantes I, De la Pompe JL, Anderson DJ (1998) neurogenin 1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482

    PubMed  CAS  Google Scholar 

  • Mann IC (1927) The developing third nerve nucleus in human embryos. J Anat (Lond) 61:424–438

    Google Scholar 

  • Marín F, Puelles L (1994) Patterning of the embryonic avian midbrain after experimental inversions: A polarizing activity from the isthmus. Dev Biol 163:19–37

    PubMed  Google Scholar 

  • Marquet JF, Declau FR, De Cock M (1988) Congenital middle ear malformations. Acta Oto-Rhino-Laryngol Belg 42:117–302

    CAS  Google Scholar 

  • Martínez S, Wassef M, Alvarado-Mallart RM (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene En. Neuron 6:971–981

    PubMed  Google Scholar 

  • Mastick GS, Fan C-M, Tessier-Lavigne M, Serbedzija GN, McMahon AP, Easter SS Jr (1996) Early detection of neuromeres in Wnt-1-/- mutant mice: Evaluation by morphological and molecular markers. J Comp Neurol 374:246–258

    PubMed  CAS  Google Scholar 

  • Matturi L, Biondo B, Mercurio P, Rossi L (2000) Severe hypoplasia of medullary arcuate nucleus. Quantitative analysis in sudden infant death syndrome. Acta Neuropathol (Berl) 99:371–375

    Google Scholar 

  • Matturi L, Biondo B, Suárez-Mier MP, Rossi L (2002) Brain stem lesions in the sudden infant death syndrome: Variability in the hypoplasia of the arcuate nucleus. Acta Neuropathol (Berl) 104:12–20

    Google Scholar 

  • May M, Schaitkin BM, eds (2000) The Facial Nerve, May’s 2nd ed. Thieme, New York, Stuttgart

    Google Scholar 

  • McKay IJ, Lewis J, Lumsden A (1997) Organization and development of facial motor neurons in the Kreisler mutant mouse. Eur J Neurosci 9:1499–1506

    PubMed  CAS  Google Scholar 

  • McMahon AP, Joyner AL, Bradley A, McMahan JA (1992) The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69:581–595

    PubMed  CAS  Google Scholar 

  • Mellinger JF, Gomez MR (1987) Agenesis of the cranial nerves. Handb Clin Neurol 50:211–223

    Google Scholar 

  • Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390

    PubMed  CAS  Google Scholar 

  • Michel EM (1863) Mémoire sur les anomalies congénitales de l’oreille interne. Gaz Méd Strasb 3:55–58

    Google Scholar 

  • Millen KJ, Wurst W, Herrup K, Joyner AL (1994) Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 120:695–706

    PubMed  CAS  Google Scholar 

  • Miller NR, Kiel SM, Green WR, Clark AW (1982) Unilateral Duane’s retraction syndrome (type 1). Arch Ophthalmol 100:1468–1472

    PubMed  CAS  Google Scholar 

  • Möbius PJ (1888) Ãœber angeborene doppelseitige Abducens-Facialis-Lähmung. Münch Med Wochenschr 35:91–94

    Google Scholar 

  • Moens CB, Prince VE (2002) Constructing the hindbrain: Insights from the zebrafish. Dev Dyn 224:1–17

    PubMed  Google Scholar 

  • Mondini C (1791) Anatomia surdi nedi sectio. De Bononiensii Scientarum et Artium Instituto Atque Academi Commentarii. Bologna, pp 419–431

    Google Scholar 

  • Moore JK, Osen KK (1979) The cochlear nuclei in man. Am J Anat 154:393–418

    PubMed  CAS  Google Scholar 

  • Moore JK, Linthicum FH Jr (2004) Auditory system. In: Paxinos G, Mai JK (eds) The Human Nervous System, 2nd ed. Elsevier, Amsterdam, pp 1241–1279

    Google Scholar 

  • Moore JK, Perazzo LM, Braun A (1995) Time course of axonal myelination in the human brainstem auditory pathway. Hearing Res 87:21–31

    CAS  Google Scholar 

  • Moore JK, Guan Y-L, Shi S-R (1997) Axogenesis in the human fetal auditory system, demonstrated by neurofilament immunohistochemistry. Anat Embryol (Berl) 195:15–30

    PubMed  CAS  Google Scholar 

  • Moore JK, Simmons DD, Guan Y-L (1999) The human olivocerebellar system: Organization and development. Audiol Neurootol 4:311–325

    PubMed  CAS  Google Scholar 

  • Morin X, Cremer H, Hirsch M-R, Kapur RP, Gotidis C, Brunet J-F (1997) Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18:411–423

    PubMed  CAS  Google Scholar 

  • Müller F, O’Rahilly R (1983) The first appearance of the major divisions of the human brain at stage 9. Anat Embryol (Berl) 168:419–432

    PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1990) The human rhombencephalon at the end of the embryonic period proper. Am J Anat 189:127–145

    PubMed  Google Scholar 

  • Müller M, Jabs N, Lorke DE, Fritzsch B, Sander M (2003) Nkx6.1 controls migration and axon pathfinding of cranial branchio-motoneurons. Development 130:5815–5826

    PubMed  Google Scholar 

  • Nager FR (1927) Zur Histologie der Taubstummheit bei Retinitis pigmentosa. Beitr Pathol Anat 77:288–303

    Google Scholar 

  • Nager FR (1952) Histologische Ohruntersuchungen bei Kindern nach mütterlicher Rubella. Pract Otorhinolaryngol 14:337–359

    CAS  Google Scholar 

  • Nager GT, Levin LS (1980) Congenital aural atresia: Embryology, pathology, classification, genetics, and surgical management. In: Paparella MM, Shumrick DA, Meyerhoff WL, Seid AB (eds) Otolaryngology, 2nd ed. Saunders, Philadelphia, PA, pp 1303–1344

    Google Scholar 

  • Nakamura H (2001) Regionalization of the optic tectum: Combinations of gene expression that define the tectum. Trends Neurosci 24:32–39

    PubMed  CAS  Google Scholar 

  • Nakano M, Yamada K, Fain J, Sener EC, Selleck CJ, Awad AH, Zwaan J, Mullaney PB, Bossy TM, Engle EC (2001) Homozygous mutations in ARIX (PHOX2A) result in congenital fibrosis of the extraocular muscles type 2. Nat Genet 29:315–320

    PubMed  CAS  Google Scholar 

  • Nakashima S, Sando I, Takahashi H, Hashida Y (1992) Temporal bone histopathologic findings of Waardenburg’s syndrome: A case report. Laryngoscope 102:563–567

    PubMed  CAS  Google Scholar 

  • Nara T, Goto N, Nakae Y, Okada A (1993) Morphometric development of the human auditory system: Ventral cochlear nucleus. Early Hum Dev 32:93–102

    PubMed  CAS  Google Scholar 

  • Nara T, Goto N, Hamano S-I, Okada A (1996) Morphometric development of the human fetal auditory system: Inferior collicular nucleus. Brain Res 18:35–39

    CAS  Google Scholar 

  • Nieuwenhuys R (1984) Anatomy of the auditory pathways, with emphasis on the brain stem. Adv Oto-Rhino-Laryngol 34:25–38

    CAS  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (1988) The Human Central Nervous System, 3rd ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nishikori T, Hatta T, Kawauchi H, Otani H (1999) Apoptosis during inner ear development in human and mouse embryos: An analysis by computer-assisted three-dimensional reconstruction. Anat Embryol (Berl) 200:19–26

    PubMed  CAS  Google Scholar 

  • Nishimura Y, Kumoi T (1992) The embryonic development of the human external auditory meatus. Preliminary report. Acta Otolaryngol 112:496–503

    PubMed  CAS  Google Scholar 

  • Norman MG, McGillivray BC, Kalousek DK, Hill A, Poskitt KJ (1995) Congenital Malformations of the Brain. Pathologic, embryologic, clinical, radiologoc and genetic aspects. Oxford University Press, New York

    Google Scholar 

  • O’Rahilly R (1983) The timing and sequence of events in the development of the human eye and ear. Anat Embryol (Berl) 168:87–99

    PubMed  CAS  Google Scholar 

  • O’Rahilly R, Müller F (1999) The Embryonic Human Brain. An atlas of developmental stages, 2nd ed. Wiley-Liss, New York

    Google Scholar 

  • O’Rahilly R, Müller F (2001) Human Embryology & Teratology, 3rd ed. Wiley-Liss, New York

    Google Scholar 

  • Ormerod C (1960) Pathology of congenital deafness. J Laryngol Otol 74:919–950

    PubMed  CAS  Google Scholar 

  • Padget DH (1948) The development of the cranial arteries in the human embryo. Contrib Embryol Carnegie Instn 32:205–261

    Google Scholar 

  • Pappas DG (1983) Hearing impairments and vestibular abnormalities among children with subclinical cytomegalovirus. Ann Otol Rhinol Laryngol 92:552–557

    PubMed  CAS  Google Scholar 

  • Pascual-Castroviejo I, Pascual-Pascual SI (2002) Congenital vascular malformations in childhood. Semin Pediatr Neurol 9:254–273

    PubMed  Google Scholar 

  • Pasini A, Wilkinson DG (2002) Stabilizing the regionalisation of the developing vertebrate central nervous system. BioEssays 24:4270438

    Google Scholar 

  • Pasman JW (1997) Auditory Evoked Responses in Preterm Infants. Thesis, University of Nijmegen

    Google Scholar 

  • Pasqualetti M, Rijli FM (2001) Homeobox gene mutations and brain-stem developmental disorders: Learning from knockout mice. Curr Opin Neurol 14:177–184

    PubMed  CAS  Google Scholar 

  • Pattyn A, Morin X, Cremer H, Goridis C, Brunet J-F (1999) The homeobox gene Phox2b is essential for development of autonomic neural crest derivatives. Nature 399:366–370

    PubMed  CAS  Google Scholar 

  • Pattyn A, Goridis C, Brunet J-F (2000a) Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol Cell Neurosci 15:235–243

    PubMed  CAS  Google Scholar 

  • Pattyn A, Hirsch M-R, Goridis C, Brunet J-F (2000b) Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127:1349–1358

    PubMed  CAS  Google Scholar 

  • Pattyn A, Vallstedt A, Dias JM, Sander M, Ericson J (2003) Complementary roles for Nkx6 and Nkx2 class proteins in the establishment of motoneuron identity in the hindbrain. Development 130:4149–4159

    PubMed  CAS  Google Scholar 

  • Pearson AA (1938) The spinal accessory nerve in human embryos. J Comp Neurol 68:243–266

    Google Scholar 

  • Pearson AA (1939) The hypoglossal nerve in human embryos. J Comp Neurol 71:21–39

    Google Scholar 

  • Pearson AA (1943) The trochlear nerve in human fetuses. J Comp Neurol 78:29–43

    Google Scholar 

  • Pearson AA (1944) The oculomotor nucleus in the human fetus. J Comp Neurol 80:47–63

    Google Scholar 

  • Pearson AA (1946) The development of the motor nuclei of the facial nerve in man. J Comp Neurol 85:461–476

    Google Scholar 

  • Peck JE (1994) Development of hearing. Part II. Embryology. J Am Acad Audiol 5:359–365

    PubMed  CAS  Google Scholar 

  • Peck JE (1995) Development of hearing. Part III. Postnatal development. J Am Acad Audiol 6:113–123

    PubMed  CAS  Google Scholar 

  • Pedraza S, Gámez J, Rovira A, Zamora A, Grive E, Raguer N, Ruscolleda J (2000) MRI findings in Möbius syndrome: Correlations with clinical features. Neurology 55:1058–1060

    PubMed  CAS  Google Scholar 

  • Pennings RJE (2004) Hereditary Deaf-Blindness. Clinical and genetic aspects. Thesis, University of Nijmegen

    Google Scholar 

  • Pennings RJE, Huygen PLM, Van Camp G, Cremers CWRJ (2003) A review of progressive phenotypes in nonsyndromic autosomal dominant hearing impairment. Audiol Med 1:47–55

    Google Scholar 

  • Petit C, Levilliers J, Hardelin J-P (2001a) Molecular genetics of hearing loss. Annu Rev Genet 35:589–646

    PubMed  CAS  Google Scholar 

  • Petit C, Levilliers J, Marlin S, Hardelin J-P (2001b) Hereditary hearing loss. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic & Molecular Bases of Inherited Disease. McGraw-Hill, New York, pp 6281–6328

    Google Scholar 

  • Phippard D, Lu L, Lee D, Saunders JC, Crenshaw EB (1999) Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear. J Neurosci 19:5980–5989

    PubMed  CAS  Google Scholar 

  • Pieh C, Lengyel D, Neff A, Fretz C, Gottlob I (2002) Brain stem hypoplasia in familial congenital horizontal gaze paralysis (FCGP) and kyphoscoliosis. Neurology 59:462–463

    PubMed  CAS  Google Scholar 

  • Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Preho MO, Puliti A, Herbarth B, Hermans-Borgmeyer I, Legius E, Matthys G, et al. (1998) SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 18:171–173

    PubMed  CAS  Google Scholar 

  • Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A, Liang Y, Morell RJ, Touchman JW, Lyons RH, Noben-Trauth K, et al. (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280:1444–1447

    PubMed  CAS  Google Scholar 

  • Proctor B, Nager GT (1982) The facial canal: Normal anatomy, variations and anomalies. Ann Otol Rhinol Laryngol 91:33–61

    Google Scholar 

  • Puelles L (1995) A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol 46:319–337

    PubMed  CAS  Google Scholar 

  • Punal JE, Siebert MF, Angueira FB, Lorenzo AV, Castro-Gago M (2001) Three new patterns with congenital unilateral facial nerve palsy due to chromosome 22q11 deletion. J Child Neurol 16:450–452

    PubMed  CAS  Google Scholar 

  • Rarey KE, Davis LE (1984) Inner ear anomalies in Waardenburg’syndrome associated with Hirschsprung’s disease. Int J Pediatr Otolaryngol 8:181–189

    CAS  Google Scholar 

  • Read AP (2001) Waardenburg syndrome. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic & Molecular Bases of Inherited Disease. McGraw-Hill, New York, pp 6097–6116

    Google Scholar 

  • Reynolds JD, Biglan AW, Hiles DA (1984) Congenital superior oblique palsy in infants. Arch Ophthalmol 102:1503–1505

    PubMed  CAS  Google Scholar 

  • Rhinn M, Brand M (2001) The midbrain-hindbrain organizer. Curr Opin Neurobiol 11:34–42

    PubMed  CAS  Google Scholar 

  • Rosenberg ML (1984) Congenital trigeminal anesthesia, review and classification. Brain 107:1073–1082

    PubMed  Google Scholar 

  • Rossel M, Capecchi MR (1999) Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126:5027–5040

    PubMed  CAS  Google Scholar 

  • Rijli FM, Gavalas A, Chambon P (1998) Segmentation and specification in the branchial region of the head: The role of the Hox selector genes. Int J Dev Biol 42:393–401

    PubMed  CAS  Google Scholar 

  • Sadl VS, Sing A, Mar L, Jin F, Cordes SP (2003) Analysis of hindbrain patterning defects caused by the kreislerneu mutation reveals multiple roles of Kreisler in hindbrain segmentation. Dev Dyn 227:134–142

    PubMed  CAS  Google Scholar 

  • Sander M, Paydar S, Ericson J, Briscoe J, Berber E, German M, Jessell TM, Rubinstein JLR (2000) Ventral neural patterning by Nkx homeobox genes: Nkx6.1 controls somatic motor neuron and ventral interneuron fates. Genes Dev 14:2134–2139

    PubMed  CAS  Google Scholar 

  • Sando I, Wood RF (1971) Congenital middle ear anomalies. Otolaryngol Clin North Am 4:291–318

    PubMed  CAS  Google Scholar 

  • Sarnat HB (2004) Watershed infarcts in the fetal and neonatal brainstem. An aetiology of central hypoventilation, dysphagia, Möbius syndrome and micrognathia. Eur J Pediatr Neurol 8:71–87

    Google Scholar 

  • Sarnat HB, Benjamin DR, Siebert JR, Kletter GB, Cheyette SR (2002) Agenesis of the mesencephalon and metencephalon with cerebellar hypoplasia: Putative mutation in the EN2 gene — report of two cases in early infancy. Ped Dev Pathol 5:54–62

    Google Scholar 

  • Scheibe A (1892a) Ein Fall von Taubstummheit mit Acusticusatrophie und Bildungsanomalien in häutigen Labyrinth beiderseits. Z Ohrenheilk 22:11–24

    Google Scholar 

  • Scheibe A (1892b) A case of deaf-mutism, with auditory atrophy and anomalies of development in the membranous labyrinth of both ears. Arch Otol 21:12–22

    Google Scholar 

  • Schneider-Maunoury S, Seitanidou T, Charnay P, Lumsden A (1997) Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. Development 124:1215–1226

    PubMed  CAS  Google Scholar 

  • Schuknecht HF (1980) Dysmorphogenesis of the inner ear. Birth Defects 16:47–71

    PubMed  CAS  Google Scholar 

  • Schuknecht HF (1993) Pathology of the Ear. Lea & Febiger, Philadelphia, PA

    Google Scholar 

  • Schuknecht HF, Churchill JA, Doran R (1959) The localization of acetylcholinesterase in the cochlea. Arch Otolaryngol 69:549–559

    CAS  Google Scholar 

  • Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP (1999) The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 21:440–443

    PubMed  CAS  Google Scholar 

  • Self T, Mahony M, Fleming J, Walsh J, Brown SD, Steel KP (1998) Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125:557–566

    PubMed  CAS  Google Scholar 

  • Siebenmann F, Bing R (1907) Ãœber den Labyrinth-und Hirnbefund bei einem an Retinitis pigmentosa erblindeten angeborenen Taubstummen. Z Ohrenheilkd 54:265–280

    Google Scholar 

  • Sharma K, Sheng HZ, Lettier K, Li H, Karavanov A, Potter S, Westphal H, Pfaff SL (1998) LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95:817–828

    PubMed  CAS  Google Scholar 

  • Smithells R, Sheppard S, Holzel H, Jones G (1990) Congenital rubella in Great Britain 1971–1988. Health Trends 22:73–76

    Google Scholar 

  • Spritz RA, Chiang P-W, Oiso N, Alkhateeb A (2003) Human and mouse disorders of pigmentation. Curr Opin Genet Dev 13:284–289

    PubMed  CAS  Google Scholar 

  • St. Charles S, DiMario FJ Jr, Grunnet ML (1993) Möbius sequence: Further in vivo support for the subclavian artery supply disruption sequence. Am J Med Genet 47:289–293

    PubMed  CAS  Google Scholar 

  • Steel KP, Barkway C (1989) Another role for melanocytes: Their importance for normal stria vascularis development in the mammalian inner ear. Development 107:453–463

    PubMed  CAS  Google Scholar 

  • Steel KP, Kros CJ (2001) A genetic approach to understanding auditory function. Nat Genet 27:143–149

    PubMed  CAS  Google Scholar 

  • Steel KP, Erven A, Kiernan AE (2002) Mice as models for human hereditary deafness. In: Keats BJB, Popper AN, Fay RR (eds) Handbook of Auditory Research, Vol 14: Genetics and Auditory Disorders. Springer, Berlin Heidelberg New York, pp 247–296

    Google Scholar 

  • Stennert E, Arold R (1973) Der doppelte Gehörgang. Klinische Studie einer seltenen Missbildung mit besonderer Berücksichtigung der anatomischen Beziehung zum extratemporalen Facialisverlauf. HNO 21:293–296

    PubMed  CAS  Google Scholar 

  • Stone JS, Oesterle EC, Rubel EW (1998) Recent insights into regeneration of auditory and vestibular hair cells. Curr Opin Neurol 11:17–24

    PubMed  CAS  Google Scholar 

  • Streeter GL (1904) The development of the cranial and spinal nerves in the occipital region of the human embryo. Am J Anat 4:83–116

    Google Scholar 

  • Streeter GL (1906) On the development of the membranous labyrinth and the acustic and facial nerves in the human embryo. Am J Anat 6:139–165

    Google Scholar 

  • Streeter GL (1911) Die Entwicklung des Nervensystems. In: Keibel F, Mall FP (Hrsg) Handbuch der Entwicklungsgeschichte des Menschen, Zweiter Band. Hirzel, Leipzig, pp 1–156

    Google Scholar 

  • Streeter GL (1912) The development of the nervous system. In: Keibel F, Mall FP (eds) Manual of Human Embryology, Vol 2. Lippincott, Philadelphia, PA, pp 1–156

    Google Scholar 

  • Streeter GL (1918) The histogenesis and growth of the otic capsule and its contained periotic tissue-spaces in the human embryo. Contrib Embryol Carnegie Instn 7:5–54

    Google Scholar 

  • Streeter GL (1922) Development of the auricle in the human embryo. Contrib Embryol Carnegie Instn 14:111–138

    Google Scholar 

  • Studer M (2001) Initiation and growth of facial motoneurone migration is dependent on rhombomeres 5 and 6. Development 128:3707–3716

    PubMed  CAS  Google Scholar 

  • Studer M, Lumsden A, Ariza-McNaughton L, Bradley N, Krumlauf R (1996) Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384:630–634

    PubMed  CAS  Google Scholar 

  • Studer M, Gavalas A, Marshall H, Ariza-McNaughton L, Rijli FM, Chambon P, Krumlauf R (1998) Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 125:1025–1036

    PubMed  CAS  Google Scholar 

  • Suehiro S, Sando I (1979) Congenital anomalies of the inner ear. Ann Otol 88(Suppl 59):1–24

    CAS  Google Scholar 

  • Sulik KK, Cotanche DA (2004) Embryology of the ear. In:Toriello HV, Reardon W, Gorlin RJ (eds) Hereditary Hearing Loss and Its Syndromes, 2nd ed. Oxford University Press, Oxford pp 17–36

    Google Scholar 

  • Tassabehji M, Read AP, Newton VE, Harris R, Balling R, Gruss P, Strachan T (1992) Waardenburg’s syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355:635–636

    PubMed  CAS  Google Scholar 

  • Tassabehji M, Newton VE, Read AP (1994) Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet 8:251–255

    PubMed  CAS  Google Scholar 

  • Teunissen E (1992) Major and Minor Congenital Anomalies of the Ear. Classification and surgical results. Thesis, University of Nijmegen

    Google Scholar 

  • Tewfik TL, Der Kaloustian VM, eds (1997) Congenital Anomalies of the Ear, Nose, and Throat. Oxford University Press, New York

    Google Scholar 

  • Thakkar N, O’Neil W, Duvally J, Liu C, Ambler M (1977) Möbius syndrome due to brain stem tegmental necrosis. Arch Neurol 34:124–126

    PubMed  CAS  Google Scholar 

  • Toriello HV, Reardon W, Gorlin RJ, eds (2004) Hereditary Hearing Loss and Its Syndromes, 2nd ed. Oxford University Press, Oxford, New York

    Google Scholar 

  • Tos M (2000) Surgical Solutions for Conductive Hearing Loss. Thieme, Stuttgart

    Google Scholar 

  • Towfighi J, Marcks K, Palmer E, Vannucci R (1979) Möbius syndrome. Neuropathologic observations. Acta Neuropathol (Berl) 48:11–17

    PubMed  CAS  Google Scholar 

  • Trainor PA, Krumlauf R (2000) Patterning the cranial neural crest: Hindbrain segmentation and Hox gene plasticity. Nature Rev Neurosci 1:116–124

    CAS  Google Scholar 

  • Tsuchida T, Ensini M, Morton SB, Baldassare M, Edlund T, Jessell TM, Pfaff SL (1994) Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79:957–970

    PubMed  CAS  Google Scholar 

  • Tyson J, Tranebjaerg L, Bellman S, Wren C, Taylor JF, Bathen J, Aslaksen B, Sorland SJ, Lund O, Malcolm S (1997) ISK and KVLQT1: Mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. Hum Mol Genet 6:2179–2185

    PubMed  CAS  Google Scholar 

  • Urbanek P, Wang ZQ, Fetka L, Wagner EF, Busslinger M (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79:901–912

    PubMed  CAS  Google Scholar 

  • Usher CH (1914) On the inheritance of retinitis pigmentosa, with notes of a case. R Lond Ophthalmol Hosp Rep 19:130–236

    Google Scholar 

  • Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). Ergebn Anat Entw Gesch 41:1–88

    Google Scholar 

  • Vahava O, Morell R, Lynch ED, Weiss S, Kagan ME, Ahituv N, Morrow JE, Lee MK, Skvorak AB, Morton CC, et al. (1998) Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science 279:1950–1954

    PubMed  CAS  Google Scholar 

  • van Aarem A, Cremers CWRJ, Benraad-van Rens MJL (1995) The Usher syndrome: A temporal bone report. Arch Otolaryngol Head Neck Surg 121:916–921

    PubMed  Google Scholar 

  • van den Munckhof P, Luk KC, Ste-Marie L, Montgomery J, Blanchet PJ, Sadikot AF, Drouin J (2003) Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130:2535–2542

    PubMed  Google Scholar 

  • Van De Water TR, Noden DM, Maderson PFA (1988) Embryology of the ear: Outer, middle and inner. Otol Med Surg 1:3–27

    Google Scholar 

  • Varela-Echeverria A, Pfaff SL, Guthrie S (1996) Differential expression of LIM homeobox genes among motor neuron populations in the developing chick brain stem. Mol Cell Neurosci 8:242–257

    Google Scholar 

  • Verzijl HTFM, van den Helm B, Veldman B, Hamel BCJ, Kuyt LP, Padberg GW, Kremer H (1999) A second gene for autosomal dominant Möbius syndrome is localized to chromosome 10q in a Dutch family. Am J Hum Genet 65:752–756

    PubMed  CAS  Google Scholar 

  • Verzijl HTFM, van der Zwaag B, Cruysberg JRM, Padberg GW (2003) Möbius syndrome redefined. A syndrome of rhombencephalic maldevelopment. Neurology 61:327–333

    PubMed  Google Scholar 

  • Verzijl HTFM, van der Zwaag B, Lammens M, ten Donkelaar HJ, Padberg GW (2005) The neuropathology of hereditary congenital facial palsy versus Möbius syndrome. Neurology 64:649–653

    PubMed  CAS  Google Scholar 

  • Victor DI (1976) The diagnosis of congenital third-nerve palsy. Brain 99:711–718

    PubMed  CAS  Google Scholar 

  • Vieille-Grosjean I, Hunt P, Gulisano M, Boncinelli E, Thorogood P (1997) Branchial HOX gene expression and human craniofacial development. Dev Biol 183:49–60

    PubMed  CAS  Google Scholar 

  • von Graefe A (1858) Vereinzelte Beobachtungen exceptionelles Verhalten des Gesichtsfeldes bei Pigmententartung der Netzhaut. Albrecht von Graefe’s Arch Klin Ophthalmol 4:250–253

    Google Scholar 

  • von Graefe A (1880) In: von Graefe A, Saemisch T (Hrsg) Handbuch der gesamten Augenheilkunde, Vol 6. Engelmann, Leipzig, p 60

    Google Scholar 

  • Von Noorden GK, Murray E, Wong SY (1986) Superior oblique paralysis: A review of 270 cases. Arch Ophthalmol 104:1771–1776

    Google Scholar 

  • Waardenburg PJ (1951) A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness. Am J Hum Genet 3:195–253

    PubMed  CAS  Google Scholar 

  • Wagenaar M, Draaijer P, Meek H, ten Donkelaar HJ, Wesseling P, Kimberling W, Cremers C (1999) The cochlear nuclei in two patients with Usher syndrome type I. Int J Pediatr Otolaryngol 50:185–195

    CAS  Google Scholar 

  • Wagenaar M, Schuknecht H, Nadol J Jr, Benraad-van Rens MJL, Kimberling WJ, Cremers CWRJ (2000) Histopathology of the temporal bone in Usher syndrome type I. Arch Otolaryngol Head Neck Surg 126:1018–1023

    PubMed  CAS  Google Scholar 

  • Wang A, Liang Y, Fridell RA, Probst FJ, Wilcox ER, Touchman JW, Morton CC, Morell RJ, Noben-Trauth K, Camper SA, Friedman TB (1998) Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280:1447–1451

    PubMed  CAS  Google Scholar 

  • Wang S, Zwaan J, Mullaney P, Jabok MH, Al-Awad A, Beggs AH, Engle EC (1998) Congenital fibrosis of the extraocular muscles type 2 (CFEOM2), an inherited exotropic strabismus fixus, maps to distal 11q13. Am J Hum Genet 63:517–525

    PubMed  CAS  Google Scholar 

  • Wangemann P (2002) K+ cycling and its regulation in the cochlea and the vestibular labyrinth. Audiol Neurootol 7:199–205

    PubMed  CAS  Google Scholar 

  • Wassef M, Joyner AL (1997) Early mesencephalon/metencephalon patterning and development of the cerebellum. Persp Dev Neurobiol 5:3–16

    CAS  Google Scholar 

  • Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, Levilliers J, Weston MD, et al. (1995) Defective myosin VIIa responsible for Usher syndrome type 1B. Nature 374: 60–61

    PubMed  CAS  Google Scholar 

  • Wilkinson DG, Bhatt S, Cook M, Boncinelli E, Krumlauf R (1989) Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain. Nature 341:405–409

    PubMed  CAS  Google Scholar 

  • Willinger M, James LS, Catz C (1991) Defining the sudden infant death syndrome (SIDS): Deliberations of an expert panel convened by the National Institute of Child Health and Human Development. Pediatr Pathol 11:677–684

    PubMed  CAS  Google Scholar 

  • Wurst W, Bally-Cuif L (2001) Neural plate patterning: Upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2:99–108

    PubMed  CAS  Google Scholar 

  • Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: An early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120:2065–2075

    PubMed  CAS  Google Scholar 

  • Xiang M, Gan L, Li D, Chen ZY, Zhou L, O’Malley BW Jr, Klein W, Nathans J (1997) Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci USA 94:9445–9450

    PubMed  CAS  Google Scholar 

  • Xiang M, Gao WQ, Hasson T, Shin JJ (1998) Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 125:3935–3946

    PubMed  CAS  Google Scholar 

  • Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117

    PubMed  CAS  Google Scholar 

  • Zec N, Filiano JJ, Kinney HC (1997) Anatomic relationships of the human arcuate nucleus of the medulla: A diI-labeling study. J Neuropathol Exp Neurol 56:509–522

    PubMed  CAS  Google Scholar 

  • Zheng JL, Gao WQ (1997) Analysis of rat vestibular hair cell development and regeneration using calretinin as an early marker. J Neurosci 17:8270–8282

    PubMed  CAS  Google Scholar 

  • Zheng Jl, Gao WQ (2000) Overexpression of math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 3:580–586

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J., Lammens, M., Cruysberg, J.R.M., Cremers, C.W.J.R. (2006). Development and Developmental Disorders of the Brain Stem. In: Clinical Neuroembryology. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34659-7_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-34659-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29140-4

  • Online ISBN: 978-3-540-34659-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics