Skip to main content

Development and Developmental Disorders of the Spinal Cord

  • Chapter
Clinical Neuroembryology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dominok GW (1962) Zur Frage der Diplomyelie. Dtsch Z Nervenheilk 183:340–350

    CAS  Google Scholar 

  • Hori A, Fischer G, Dietrich-Schott B, Ikeda K (1982) Dimyelia, diplomyelia, and diastematomyelia. Clin Neuropathol 1:23–30

    PubMed  CAS  Google Scholar 

  • Környey S (1925) Beiträge zur Entwicklungsmechanik und Pathologie des foetalen Zentralnervensystems. Arch Psychiatr Nervenkrh 72:755–787

    Google Scholar 

  • Schneiderling W (1938) Unvollkommene dorso-ventrale Verdoppelung des Rückenmarkes. Virchows Arch Pathol Anat Physiol 31:479–489

    Google Scholar 

References

  • Bentley JFR, Smith JR (1960) Developmental posterior remnants and spinal malformations. The split notochord syndrome. Arch Dis Child 35:76–86

    CAS  Google Scholar 

  • Bremer JL (1952) Dorsal intestinal fistula; accessory neurenteric canal; diastematomyelia. Arch Pathol 54:132–138

    CAS  Google Scholar 

  • Feller A, Sternberg H (1920) Zur Kenntnis der Fehlbildungen der Wirbelsäule. I. Die Wirbelkörperspalte und ihre formale Genese. Virchows Arch Pathol Anat 272:613–640

    Google Scholar 

  • O’Rahilly R, Müller F (2001) Human Embryology & Teratology, 3rd ed. Wiley-Liss, New York

    Google Scholar 

  • Pang D, Dias MS, Ahdab-Barmada M (1992) Split notochord malformation. Part I: A unified theory of embryogenesis for double spinal cord malformations. Neurosurgery 31:451–480

    PubMed  CAS  Google Scholar 

  • Skandalakis JE, Gray SW (1994) Embryology for Surgeons, 3rd ed. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • ten Donkelaar HJ, Willemsen MAAP, van der Heijden I, Beems T, Wesseling P (2002) A spinal intradural enterogenous cyst with well-differentiated muscularis propria. Acta Neuropathol (Berl) 104:538–542

    PubMed  Google Scholar 

References

  • Bickers DS, Adams RD (1949) Hereditary stenosis of the aqueduct of Sylvius as a cause of congenital hydrocephalus. Brain 72:246–252

    Google Scholar 

  • Chow CW, Halliday JL, Anderson RM, Danks DM, Fortune DW (1985) Congenital absence of pyramids and its significance in genetic diseases. Acta Neuropathol (Berl) 65:313–317

    PubMed  CAS  Google Scholar 

  • Dobson CB, Villagra F, Clowry GJ, Smith M, Kenwrick S, Donnai D, Miller S, Eyre JA (2001) Abnormal corticospinal function but normal axonal guidance in human L1CAM mutations. Brain 124:2393–2406

    PubMed  CAS  Google Scholar 

  • Finckh U, Schröder J, Ressler B, Veske A, Gal A (2000) Spectrum and detection rate of L1CAM mutations in isolated and familial cases with clinically suspected L1-disease. Am J Med Genet 92:40–46

    PubMed  CAS  Google Scholar 

  • Fransen E, van Camp G, Vits L, Willems PJ (1997) L1-associated diseases: Clinical geneticists divide, molecular geneticists unite. Hum Mol Genet 6:1625–1632

    PubMed  CAS  Google Scholar 

  • Rosenthal A, Jouet M, Kenwrick SA (1992) Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet 2:107–112

    PubMed  CAS  Google Scholar 

  • ten Donkelaar HJ, Lammens M, Wesseling P, Hori A, Keyser A, Rotteveel J (2004) Development and malformations of the human pyramidal tract. J Neurol 251:1429–1442

    PubMed  Google Scholar 

References

  • Altman J, Bayer SA (1980a) Development of the brain stem of the rat. I. Thymidine-radiographic study of the time of origin of neurons of the lower medulla. J Comp Neurol 194:1–35

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1980b) Development of the brain stem of the rat. II. Thymidine-radiographic study of the time of origin of neurons of the upper medulla, excluding the vestibular and auditory nuclei. J Comp Neurol 194:37–56

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1980c) Development of the brain stem of the rat. III. Thymidine-radiographic study of the time of origin of neurons of the vestibular and auditory nuclei. J Comp Neurol 194:877–904

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1980d) Development of the brain stem of the rat. IV. Thymidine-radiographic study of the time of origin of neurons in the pontine region. J Comp Neurol 194:905–929

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1981) Development of the brain stem of the rat. V. Thymidine-radiographic study of the time of origin of neurons in the midbrain tegmentum. J Comp Neurol 198:677–716

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1984) The development of the rat spinal cord. Adv Anat Embryol Cell Biol 85:1–166

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (2001) Development of the Human Spinal Cord. An interpretation based on experimental studies in animals. Oxford University Press, New York

    Google Scholar 

  • Anton G (1922) Ueber Ersatz der Bewegungsleistungen beim Menschen und Entwicklungsstörungen des Kleinhirns. Zbl Ges Neurol Psychiatr 30:372–374

    Google Scholar 

  • Arber S, Han B, Mendelsohn M, Smith M, Jessell TM, Sockanathan S (1999) Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23:659–674

    PubMed  CAS  Google Scholar 

  • Arber S, Ladle DR, Lin JH, Frank E, Jessell TM (2000) ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101:485–498

    PubMed  CAS  Google Scholar 

  • Armand J, Edgley SA, Lemon RN, Olivier E (1994) Protracted postnatal development of corticospinal projections from the primary motor cortex to hand motoneurones in the macaque monkey. Exp Brain Res 101:178–182

    PubMed  CAS  Google Scholar 

  • Armand J, Olivier E, Edgley SA, Lemon RN (1996) The structure and function of the developing corticospinal tract: Some key issues. In: Wing AM, Haggard P, Flanagan JR (eds) Hand and Brain. The neurophysiology and psychology of hand movements. Academic, San Diego, CA, pp 125–145

    Google Scholar 

  • Armand J, Olivier E, Edgley SA, Lemon RN (1997) Postnatal development of corticospinal projections from motor cortex to the cervical enlargement in the macaque monkey. J Neurosci 17:251–266

    PubMed  CAS  Google Scholar 

  • Asanuma C, Ohkawa R, Stanfield BB, Cowan WM (1988) Observations on the development of certain ascending inputs to the thalamus in rats. I. Postnatal development. Dev Brain Res 41:159–170

    Google Scholar 

  • Auclair F, Bélanger M-C, Marchand R (1993) Ontogenetic study of early brain stem projections to the spinal cord in the rat. Brain Res Bull 30:281–289

    PubMed  CAS  Google Scholar 

  • Auclair F, Marchand R, Glover JC (1999) Regional patterning of reticulospinal and vestibulospinal neurons in the hindbrain of mouse and rat embryos. J Comp Neurol 411:288–300

    PubMed  CAS  Google Scholar 

  • Barnes S (1901) Degeneration in hemiplegia: With special reference to a ventrolateral pyramidal tract, the accessory fillet and Pick’s bundle. Brain 24:463–501

    Google Scholar 

  • Bayer SA, Altman J (2002) The Spinal Cord from Gestational Week 4 to the 4th Postnatal Month. CRC, Boca Raton, FL

    Google Scholar 

  • Bayer SA, Altman J, Russo RJ, Zhang X (1995) Embryology. In: Duckett S (ed) Pediatric Neuropathology. Williams & Wilkins, Baltimore, MD, pp 54–107

    Google Scholar 

  • Beal JA, Bice TN (1994) Neurogenesis of spinothalamic and spinocerebellar tract neurons in the lumbar spinal cord of the rat. Brain Res 78:49–56

    CAS  Google Scholar 

  • Benstead JG (1953) A case of diastematomyelia. J Pathol Bacteriol 66:553–557

    PubMed  CAS  Google Scholar 

  • Bentley JFR, Smith JR (1960) Developmental posterior remnants and spinal malformations. The split notochord syndrome. Arch Dis Child 35:76–86

    PubMed  CAS  Google Scholar 

  • Bergemann AD, Zhang L, Chiang MK, Brambilla R, Klein R, Flanagan JG (1998) Ephrin-B3, a ligand for the receptor EphB3, expressed in the midline of the developing neural tube. Oncogene 16:471–480

    PubMed  CAS  Google Scholar 

  • Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi NY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30:411–422

    PubMed  CAS  Google Scholar 

  • Bodhireddy SR, Lyman WD, Rashbaum WK, Weidenheim KM (1994) Immunohistochemical detection of myelin basic protein is a sensitive marker of myelination in second trimester human fetal spinal cord. J Neuropathol Exp Neurol 53:144–149

    PubMed  CAS  Google Scholar 

  • Bremer JL (1952) Dorsal intestinal fistula; accessory neurenteric canal; diastematomyelia. Arch Pathol 54:132–138

    CAS  Google Scholar 

  • Briscoe J, Ericson J (2001) Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 11:43–49

    PubMed  CAS  Google Scholar 

  • Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445

    PubMed  CAS  Google Scholar 

  • Brodal A (1981) Neurological Anatomy in Relation to Clinical Medicine, 3rd ed.Oxford University Press, Oxford

    Google Scholar 

  • Brodal P (1992) The Central Nervous System. Structure and function. Oxford University Press, Oxford

    Google Scholar 

  • Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301

    PubMed  CAS  Google Scholar 

  • Bumke OCE (1907) Ueber Variationen im Verlauf der Pyramidenbahn. Arch Psychiatr Nervenkr 42:1–18

    Google Scholar 

  • Burrill JD, Moran L, Goulding MD, Saueressig H (1997) PAX2 is expressed in multiple spinal cord interneurons, including a population of EN1+ interneurons that require PAX6 for their development. Development 124:4493–4503

    PubMed  CAS  Google Scholar 

  • Caroni P, Schwab ME (1988a) Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol 106:1281–1288

    PubMed  CAS  Google Scholar 

  • Caroni P, Schwab ME (1988b) Antibody against myelin-associated inhibitors of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1:85–96

    PubMed  CAS  Google Scholar 

  • Caspary T, Anderson KV (2003) Patterning cell types in the dorsal spinal cord: What the mouse mutants say. Nat Rev Neurosci 4:290–298

    CAS  Google Scholar 

  • Castellani V, Chédotal A, Schachner M, Faivre-Sarrailh C, Rougon G (2000) Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sem3A and L1 signaling pathways in axonal guidance. Neuron 27:237–249

    PubMed  CAS  Google Scholar 

  • Cauna N, Mannon G (1959) Development and postnatal changes of digital Pacinian corpuscles (corpuscula lamellosa) in the human hand. J Anat (Lond) 93:271–286

    PubMed  CAS  Google Scholar 

  • Cauna N, Mannon G (1961) Organization and development of the preterminal nerve pattern in the palmar digital tissues in man. J Comp Neurol 117:309–328

    PubMed  CAS  Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413

    PubMed  CAS  Google Scholar 

  • Chimelli L, Scaravilli F (1987) The development of the gracile nucleus in the rat: The time of ingrowth of ascending primary sensory fibers and the effect of early deafferentation. Neuroscience 22:661–670

    PubMed  CAS  Google Scholar 

  • Chow CW, Halliday JL, Anderson RM, Danks DM, Fortune DW (1985) Congenital absence of pyramids and its significance in genetic diseases. Acta Neuropathol (Berl) 65:313–317

    PubMed  CAS  Google Scholar 

  • Christ B (1990) Entwicklung der Rumpfwand. In; Hinrichsen KV (Hrsg) Humanembryologie. Springer, Berlin Heidelberg New York, pp 823–837

    Google Scholar 

  • Cohen NR, Taylor JSH, Scott LB, Guillery RW, Soriano P, Furley AJ (1997) Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr Biol 8:26–33

    Google Scholar 

  • Coonan JR, Greferath U, Messenger J, Hartley L, Murphy M, Boyd AW, Dottori M, Galea MP, Bartlett Pf (2001) Development and reorganization of corticospinal projections in EphA4 deficient mice. J Comp Neurol 436:248–262

    PubMed  CAS  Google Scholar 

  • Cooper ERA (1946) The development of the human red nucleus and corpus striatum. Brain 69:34–44

    Google Scholar 

  • D’Agostino AN, Kernohan JW, Brown JR (1963) The Dandy-Walker syndrome. J Neuropathol Exp Neurol 22:450–470

    PubMed  CAS  Google Scholar 

  • Dahme M, Bartsch U. Martini R, Anliker B, Schachner M, Mantei N (1997) Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat Genet 17:346–349

    PubMed  CAS  Google Scholar 

  • Dambska M, Wisniewski K, Sher JH (1984) An autopsy case of hemimegalencephaly. Brain Dev 6:60–64

    PubMed  CAS  Google Scholar 

  • de Boer-van Huizen RT, ten Donkelaar HJ (1999) Early development of descending supraspinal pathways: A tracing study in fixed and isolated rat embryos. Anat Embryol (Berl) 199:539–547

    PubMed  Google Scholar 

  • Déjérine J (1901) Anatomie des centres nerveux, Tôme 2. Rueff, Paris

    Google Scholar 

  • Déjérine J, Déjérine A (1902) Sur l’hypertrophie compensatrice des faisceaux pyramidal du côté sain, dans un cas d’hémiplégie cérébrale infantile. Rev Neurol 10:642–646

    Google Scholar 

  • de Vries JIP, Visser GHA, Prechtl HFR (1982) The emergence of fetal behavior. I. Qualitative aspects. Early Human Devl 7:301–322

    Google Scholar 

  • de Vries JIP Visser GHA, Prechtl HFR (1984) Fetal motility in the first half of pregnancy. In: Prechtl HFR (ed) Continuity of Neural Functions from Prenatal to Postnatal Life. Spastics International, Oxford, pp 46–64

    Google Scholar 

  • Diez del Corral R, Storey KG (2001) Markers in vertebrate neurogenesis. Nat Rev Neurosci 2:835–839

    PubMed  CAS  Google Scholar 

  • Dominok GW (1962) Zur Frage der Diplomyelie. Dtsch Z Nervenheilk 183:340–350

    CAS  Google Scholar 

  • Donatelle JM (1977) Growth of the corticospinal tracts and the development of placing reactions in the postnatal rat. J Comp Neurol 175:207–232

    PubMed  CAS  Google Scholar 

  • Dottori M, Hartley L, Galea M, Paxinos G, Polizotto M, Kilpatrick T, Bartlett PF, Murphy M, Köntgen F, Boyd AW (1998) EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc Natl Acad Sci USA 95:13248–13253

    PubMed  CAS  Google Scholar 

  • Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signalling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430

    PubMed  CAS  Google Scholar 

  • Emery JL, Lendon RG (1974) The local cord lesion in neurospinal dysraphism (meningomyelocele). J Pathol 110:83–96

    Google Scholar 

  • Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM (1996) Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87:661–673

    PubMed  CAS  Google Scholar 

  • Ericson J, Briscoe J, Rashbass P, van Heyningen V, Jessell TM (1997) Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harb Symp Quant Biol 62:451–466

    PubMed  CAS  Google Scholar 

  • Eyre JA, Miller S, Romesh V (1991) Constancy of central production delays during development in man: Investigation of motor and somatosensory pathways. J Physiol (Lond) 434:441–452

    PubMed  CAS  Google Scholar 

  • Eyre JA, Miller S, Clowry GJ, Conway EA, Watts C (2000) Functional coticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 123:51–64

    PubMed  Google Scholar 

  • Eyre JA, Taylor JP, Villagra F, Smith M, Miller S (2001) Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology 57:1543–1554

    PubMed  CAS  Google Scholar 

  • Feller A, Sternberg H (1929) Zur Kenntnis der Fehlbildungen der Wirbelsäule. I. Die Wirbelkörperspalte und inhre formale Genese. Virchows Arch Pathol Anat 272:613–640

    Google Scholar 

  • Finger JH, Bronson RT, Harris B, Johnson K, Przyborski SA, Ackerman SL (2002) The netrin receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons. J Neurosci 22:10346–10356

    PubMed  CAS  Google Scholar 

  • Flament D, Goldsmith P, Lemon RN (1992a) The development of corticospinal projections to tail and hindlimb motoneurons studied in infant macaques using magnetic brain stimulation. Exp Brain Res 90:225–228

    PubMed  CAS  Google Scholar 

  • Flament D, Hall EJ, Lemon RN (1992b) The development of corticomotoneuronal projections investigated using magnetic brain stimulation in the infant macaque. J Physiol (Lond) 447:755–768

    PubMed  CAS  Google Scholar 

  • Flechsig P (1876) Die Leitungsbahnen im Gehirn und Rückenmark des Menschen auf Grund entwicklungsgeschichtlicher Untersuchungen. Engelmann, Leipzig

    Google Scholar 

  • Foerster O (1936) Motorische Felder und Bahne. In: Bumke O, Foerster O (Hrsg) Handbuch der Neurologie, Band 6. Springer, Berlin Heidelberg New York, pp 1–357

    Google Scholar 

  • Forssberg H, Eliasson AC, Kinoshita H, Johansson RS, Westling G (1991) Development of human precision grip. I. Basic coordination of force. Exp Brain Res 85:451–457

    PubMed  CAS  Google Scholar 

  • Friede RL (1989) Developmental Neuropathology, 2nd ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Friede RL, Boltshauser E (1978) Uncommon syndromes of cerebellar vermis aplasia. I. Joubert syndrome. Dev Med Child Neurol 20:758–763

    PubMed  CAS  Google Scholar 

  • Fujimori KE, Takeuchi K, Yazaki T, Uyemura K, Nojyo Y, Tamamaki N (2000) Expression of L1 and TAG-1 in the corticospinal, callosal, and hippocampal commissural neurons in the developing rat telencephalon as revealed by retrograde and in situ hybridization double labeling. J Comp Neurol 417:275–288

    PubMed  CAS  Google Scholar 

  • Galea MP, Darian-Smith I (1995) Postnatal maturation of the direct corticospinal projections in the macaque monkey. Cereb Cortex 5:518–540

    PubMed  CAS  Google Scholar 

  • Galea MP, Darian-Smith I (1997a) Corticospinal projection patterns following unilateral section of the spinal cord in the newborn and juvenile macaque monkey. J Comp Neurol 381:282–306

    PubMed  CAS  Google Scholar 

  • Galea MP, Darian-Smith I (1997b) Manual dexterity and corticospinal connectivity following unilateral section of the cervical spinal cord in the macaque monkey. J Comp Neurol 381:307–319

    PubMed  CAS  Google Scholar 

  • Gilles FH, Shankle W, Dooling EC (1983) Myelinated tracts. In: Gilles FH, Leviton A, Dooling EC (eds) The Developing Human Brain. Wright, Bristol, pp 117–183

    Google Scholar 

  • Gómez-Skarmeta JL, Campuzano S, Modolell J (2003) Half a century of neural prepatterning: The story of a few bristles and many genes. Nat Rev Neurosci 4:587–598

    PubMed  Google Scholar 

  • Gorgels TGMF (1990) A quantitative analysis of axon outgrowth, axon loss, and myelination in the rat pyramidal tract. Dev Brain Res 54:51–61

    CAS  Google Scholar 

  • Gorgels TGMF (1991) Outgrowth of the pyramidal tract in the rat cervical spinal cord: Growth cone ultrastructure and guidance. J Comp Neurol 306:95–116

    PubMed  CAS  Google Scholar 

  • Gorgels TGMF, Oestreicher AB, de Kort EJM, Gispen WH (1987) Immunocytochemical distribution of the protein kinase C substrate B-50 (GAP43) in developing rat pyramidal tract. Neurosci Lett 83:59–64

    PubMed  CAS  Google Scholar 

  • Gowan K, Helms AW, Hunsaker TL, Collisson T, Ebert PJ, Odom R, Johnson JE (2001) Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 31:219–232

    PubMed  CAS  Google Scholar 

  • Gribnau AAM, de Kort EJM, Dederen PJWC, Nieuwenhuys R (1986) On the development of the pyramidal tract in the rat. II. An anterograde tracer study of the outgrowth of the corticospinal fibers. Anat Embryol (Berl) 175:101–110

    PubMed  CAS  Google Scholar 

  • Griepentrog F (1953) Eine seltene Form von Rückenmarksmißbildung (Partielle unfreie Diplomyelie). Zentralbl Pathol 90:380–384

    CAS  Google Scholar 

  • Grillner S (2003) The motor infrastructure: From ion channels to neuronal networks. Nat Rev Neurosci 4:573–586

    PubMed  CAS  Google Scholar 

  • Gross MK, Dottori M, Goulding M (2002) Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34:535–549

    PubMed  CAS  Google Scholar 

  • Haas E (1952) Eine fortsatzähnliche Mißbildung des Rückenmarkes und ihre Abgrenzung von den Diastematomyelien. Zentralbl Pathol 88:16–20

    Google Scholar 

  • Harding B, Copp AJ (1997) Malformations. In:Graham DI, Lantos PL (eds) Greenfield’s Neuropathology, 6th ed. Arnold, London, pp 397–533

    Google Scholar 

  • Heffner CD, Lumsden AGS, O’Leary DDM (1990) Target control of collateral extension and directional growth in the mammalian brain. Science 247:217–220

    PubMed  CAS  Google Scholar 

  • His W (1886) Zur Geschichte des menschlichen Rückenmarkes und der Nervenwurzeln. Abh Kön Sächs Ges Wiss Math Phys Kl 13:313–372

    Google Scholar 

  • Hoche A (1897a) Ueber Variationen im Verlaufe der Pyramidenbahn. Neurol Zbl 16:993–997

    Google Scholar 

  • Hoche A (1897b) Beiträge zur Anatomie der Pyramidenbahn und der oberen Schleife, nebst Bemerkungen über die abnorme Bündel in Pons und Medulla oblongata. Arch Psychiatr Nervenkr 30:103–136

    Google Scholar 

  • Hogg ID (1941) Sensory nerves and associated structures in the skin of human fetuses of 8 to 14 weeks of menstrual age correlated with functional capability. J Comp Neurol 75:371–410

    Google Scholar 

  • Holstege G (1991) Descending motor pathways and the spinal motor system: Limbic and non-limbic components. Prog Brain Res 87:307–421

    PubMed  CAS  Google Scholar 

  • Hooker D (1938) The origin of grasping movement in man. Proc Philos Soc 79:597–606

    Google Scholar 

  • Hooker D (1954) Early human fetal behavior, with a preliminary note on double simultaneous fetal stimulation. Res Public Assoc Nerv Ment Dis 33:98–113

    CAS  Google Scholar 

  • Hori A (1981) Microdysgenesia of the human spinal cord (in Japanese). Shinkei Byori Gaku (Neuropathology) 2:147–149

    Google Scholar 

  • Hori A (1983) Microdysplasia of human spinal cord. Part 2: A case of deviated dorsal longitudinal septum (in Japanese). Shinkei Byori Gaku (Neuropathology) 4:1–2

    Google Scholar 

  • Hori A (1988a) Heterotopic neurons in human spinal nerve roots: What is their clinical significance? J Neurol 235:348–351

    PubMed  CAS  Google Scholar 

  • Hori A (1988b) Abnormal course of spinal posterior roots and tracts associated with brain malformations. Sensory pathway malformation. Acta Neuropathol (Berl) 75:637–639

    PubMed  CAS  Google Scholar 

  • Hori A (1998) Developmental anomalies of the spinal cord. Neuropathology 18:433–443

    Google Scholar 

  • Hori A, Fischer G, Dietrich-Schott B, Ikeda K (1982) Dimyelia, diplomyelia, and diastematomyelia. Clin Neuropathol 1:23–30

    PubMed  CAS  Google Scholar 

  • Humphrey T (1960) The development of the pyramidal tracts in human fetuses, correlated with cortical differentiation. In: Tower DB, Schadé JP (eds) Structure and Function of the Cerebral Cortex. Elsevier, Amsterdam, pp 93–103

    Google Scholar 

  • Humphrey T (1964) Some correlations between the appearance of human fetal reflexes and the development of the nervous system. Prog Brain Res 4:93–135

    Google Scholar 

  • Ikeda Y, Terashima T (1997) Corticospinal tract neurons are radially malpositioned in the sensory-motor cortex of the shaking rat Kawasaki. J Comp Neurol 383:370–380

    PubMed  CAS  Google Scholar 

  • Imondi R, Wideman C, Kaprielian Z (2000) Complementary expression of transmembrane ephrins and their receptors in the mouse spinal cord: A possible role in constraining the orientation of longitudinally projecting axons. Development 127:1397–1410

    PubMed  CAS  Google Scholar 

  • Inoue K, Terashima T, Inoue Y (1991) The intracortical position of pyramidal tract neurons in the motor cortex of the reeler changes from postnatal day 10 to adulthood. Dev Brain Res 62:146–150

    CAS  Google Scholar 

  • James CCM, Lassman LP (1964) Diastematomyelia. A critical survey of 24 cases submitted to laminectomy. Arch Dis Childh 39:125–130

    PubMed  CAS  Google Scholar 

  • James CCM, Lassman LP (1972) Spinal Dysraphism. Spina bifida occulta. Butterworths, London

    Google Scholar 

  • Janzer RC, Friede RL (1982) Dandy-Walker syndrome with atresia of the fourth ventricle and multiple rhombencephalic malformations. Acta Neuropathol (Berl) 58:81–86

    PubMed  CAS  Google Scholar 

  • Jen JC, Chan W-M, Bosley TM, Wan J, Carr JR, Rüb U, Shattuck D, Salamon G, Kudo LC, Ou J, et al. (2004) Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 304:1509–1513

    PubMed  CAS  Google Scholar 

  • Jessell TM (2000) Neuronal specification in the spinal cord: Inductive signals and transcriptional codes. Nature Rev Genet 1:20–29

    CAS  Google Scholar 

  • Joosten EAJ, Bär DPR (1999) Axon guidance of outgrowing corticospinal fibres in the rat. J Anat (Lond) 194:15–32

    PubMed  Google Scholar 

  • Joosten EAJ, Gribnau AAM (1989) Astrocytes and guidance of outgrowing corticospinal tract axons in the rat. An immunocytochemical study using anti-vimentin and anti-glial fibrillary acidic protein. Neuroscience 31:439–452

    PubMed  CAS  Google Scholar 

  • Joosten EAJ, Gribnau AAM, Dederen PJWC (1987) An anterograde tracer study of the developing corticospinal tract in the rat: Three components. Dev Brain Res 36:121–130

    Google Scholar 

  • Joosten EAJ, Gribnau AAM, Dederen PJWC (1989) Postnatal development of the corticospinal tract in the rat. An ultrastructural anterograde HRP study. Anat Embryol 179:449–456

    PubMed  CAS  Google Scholar 

  • Joosten EAJ, Gribnau AAM, Gorgels TGMF (1990) Immunoelectron microscopic localization of cell adhesion molecule L1 in developing rat pyramidal tract. Neuroscience 38:675–686

    PubMed  CAS  Google Scholar 

  • Joosten EAJ, van der Ven PFM, Hooiveld MHW, ten Donkelaar HJ (1991) Induction of corticospinal target finding by release of a diffusible, chemotropic factor in cervical spinal grey matter. Neurosci Lett 128:25–28

    PubMed  CAS  Google Scholar 

  • Kania A, Johnston RL, Jessell TM (2000) Coordinate roles for LIM homeobox genes in directing the dorsoventral trajectory of motor axons in the vertebrate limb. Cell 102:161–173

    PubMed  CAS  Google Scholar 

  • Kersten W (1954) Rückenmarksmißbildung beim Hund und Menschen. Dtsch Tierärtzl Wochenschr 61:338–346

    Google Scholar 

  • Kertesz A, Geschwind N (1971) Patterns of pyramidal decussation and their relationship to handedness. Arch Neurol 24:326–332

    PubMed  CAS  Google Scholar 

  • Kiehn O, Butt SJB (2003) Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Prog Neurobiol 70:347–361

    PubMed  CAS  Google Scholar 

  • Killackey HP, Dehay C, Giroud P, Berland M, Kennedy H (1997) Distribution of corticospinal projection neurons in the neocortex of the fetal macaque monkey. Soc Neurosci Abstr 23:902

    Google Scholar 

  • Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234

    PubMed  CAS  Google Scholar 

  • Kirkland JA (1979) Spinal cords with no roots. Lancet 1979(ii):740

    Google Scholar 

  • Konstantinidou AD, Silos-Santiago I, Flaris N, Snider WD (1995) Development of the primary afferent projection in human spinal cord. J Comp Neurol 354:1–12

    Google Scholar 

  • Környey S (1925) Beiträge zur Entwicklungsmechanik und Pathologie des foetalen Zentralnervensystems. Arch Psychiatr Nervenkrh 72:755–787

    Google Scholar 

  • Kozlowski MA, Williams C, Hinton DR, Miller CA (1989) Heterotopic neurons in spinal cord of patients with ALS. Neurology 39:644–648

    PubMed  CAS  Google Scholar 

  • Kramer W (1949) De ongekruiste pyramidebaan. Een neuroanatomisch onderzoek. Thesis, University of Indonesia, Batavia

    Google Scholar 

  • Krams M, Quinton R, Ashburner J, Friston KJ, Frackowiak RSJ, Bouloux P-MG, Passingham RE (1999) Kallmann’s syndrome: Mirror movements associated with bilateral corticospinal tract hypertrophy. Neurology 52:816–822

    PubMed  CAS  Google Scholar 

  • Kudo N, Yamada T (1987) Morphological and physiological studies of the development of the monosynaptic reflex pathway in the rat lumbar spinal cord. J Physiol (Lond) 389:441–459

    PubMed  CAS  Google Scholar 

  • Kudo N, Furukawa F, Okado N (1993) Development of descending fibers to the rat embryonic spinal cord. Neurosci Res 16:131–141

    PubMed  CAS  Google Scholar 

  • Kullander K, Croll SD, Zimmer M, Pan L, McClain J, Hughes V, Zabski S, DeChiara TM, Klein R, Yancopoulos GD, Gale NW (2001) Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev 15:877–888

    PubMed  CAS  Google Scholar 

  • Kumar R, Jain R, Rao KM, Hussain R (2001) Intraspinal neurenteric cysts — report of three paediatric cases. Child Nerv Syst 17:584–588

    CAS  Google Scholar 

  • Kuypers HGJM (1958) Corticobulbar connexions to the pons and lower brain stem in man. An anatomical study. Brain 81:364–388

    PubMed  CAS  Google Scholar 

  • Kuypers HGJM (1962) Corticospinal connections. Postnatal development in the rhesus monkey. Science 138:678–680

    PubMed  CAS  Google Scholar 

  • Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brooks VB, Brookhart JM, Mountcastle VB (eds) Handbook of Physiology — The Nervous System, Vol 2: Motor Systems. American Physiological Society, Bethesda, MD, pp 597–666

    Google Scholar 

  • Lagger RL (1979) Failure of pyramidal tract decussation in the Dandy-Walker syndrome. J Neurosurg 50:382–387

    PubMed  CAS  Google Scholar 

  • Lakke EAJF (1997) The projections to the spinal cord of the rat during development. A time-table of descent. Adv Anat Embryol Cell Biol 135:1–143

    Google Scholar 

  • Lakke EAJF, Marani E (1991) Prenatal descent of rubrospinal fibers through the spinal cord of the rat. J Comp Neurol 314:67–78

    PubMed  CAS  Google Scholar 

  • Lankamp DJ (1967) The fibre composition of the pedunculus cerebri (crus cerebri) in man. Thesis, University of Leiden

    Google Scholar 

  • Lawrence DG, Hopkins DA (1976) The development of motor control in the rhesus monkey: Evidence concerning the role of corticomotoneuronal connections. Brain 99:235–254

    PubMed  CAS  Google Scholar 

  • Leber SM, Breedlove SM, Sanes JR (1989) Lineage of motoneurons in chick spinal cord studied with a retroviral marker. Ann Neurol 26:447–448

    Google Scholar 

  • Leber SM, Breedlove SM, Sanes JR (1990) Lineage, arrangement, and death of clonally related motoneurons in chick spinal cord. J Neurosci 10:2451–2462

    PubMed  CAS  Google Scholar 

  • Lee KJ, Jessell TM (1999) The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 22:261–294

    PubMed  CAS  Google Scholar 

  • Litingtung Y, Chiang C (2000) Control of Shh activity and signaling in the neural tube. Dev Dyn 219:143–154

    PubMed  CAS  Google Scholar 

  • Luhan JA (1959) Long survival after unilateral stab wound of medulla with unusual pyramidal tract distribution. Arch Neurol 1:427–434

    PubMed  CAS  Google Scholar 

  • Ma Q, Fode C, Guillemot F, Anderson DJ (1999) Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev 13:1717–1728

    PubMed  CAS  Google Scholar 

  • Marti E, Bovolenta P (2002) Sonic hedgehog in CNS development: One signal, multiple outputs. Trends Neurosci 25:89–96

    PubMed  CAS  Google Scholar 

  • Marti E, Bumcrot DA, Takada R, McMahon AP (1995) Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375:322–325

    PubMed  CAS  Google Scholar 

  • Martin JE, Mather K, Swash M (1993) Heterotopic neurons in amyotrophic lateral sclerosis. Neurology 43:1420–1422

    PubMed  CAS  Google Scholar 

  • Matise M (2002) A dorsal elaboration in the spinal cord. Neuron 34:491–493

    PubMed  CAS  Google Scholar 

  • Matise MP, Joyner AL (1997) Expression patterns of developmental control genes in normal and Engrailed-1 mutant mouse spinal cord reveal early diversity in developing interneurons. J Neurosci 17:7805–7816

    PubMed  CAS  Google Scholar 

  • Mestrom LHJ (1911) Variaties in de pyramidenkruising. Thesis, University of Amsterdam. Van Langenhuysen, Amsterdam

    Google Scholar 

  • Mirnics K, Koerber HR (1995) Prenatal development of rat primary afferent fibers. II. Central projections. J Comp Neurol 355:601–614

    PubMed  CAS  Google Scholar 

  • Moran-Rivard L, Kagawa T, Saueressig H, Gross MK, Burrill J, Goulding M (2001) Evx1 is a postmitotic determinant of V0 interneuron identity in the spinal cord. Neuron 29:385–399

    PubMed  CAS  Google Scholar 

  • Müller F, O’Rahilly R (1988a) The development of the human brain from a closed neural tube at stage 13. Anat Embryol (Berl) 177:203–224

    PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1988b) The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anat Embryol (Berl) 177:495–511

    PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1989a) The human brain at stage 16, including the initial evagination of the neurohypophysis. Anat Embryol (Berl) 179:551–569

    PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1989b) The human brain at stage 17, including the appearance of the future olfactory bulb and the first amygdaloid nuclei. Anat Embryol (Berl) 180:353–369

    PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1990a) The human brain at stages 21–23, with particular reference to the cerebral cortical plate and to the development of the cerebellum. Anat Embryol (Berl) 182:375–400

    PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1990b) The human rhombencephalon at the end of the embryonic period proper. Am J Anat 189:127–145

    PubMed  Google Scholar 

  • Müller F, O’Rahilly R, Benson DR (1986) The early origin of vertebral anomalies, as illustrated by a ‘butterfly vertebra’. J Anat (Lond) 177:3–19

    Google Scholar 

  • Müller K, Hömberg V, Lenard H-G (1991) Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneuronal projections. Electroencephalogr Clin Neurophysiol 81:63–70

    PubMed  Google Scholar 

  • Müller K, Kass-Illiyya F, Reitz M (1997) Ontogeny of ipsilateral corticospinal projections: A developmental study with transcranial magnetic stimulation. Ann Neurol 42:705–711

    PubMed  Google Scholar 

  • Müller T, Brohmann H, Pierani A, Heppenstall PA, Lewin GR, Jessell TM, Birchmeier C (2002) The homeodomain factor Lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron 34:551–562

    PubMed  Google Scholar 

  • Nait-Oumesmar B, Stecca B, Fatterpekkar G, Naidich T, Corbin J, Lazzarini RA (2002) Ectopic expression of Gcm1 induces congenital spinal cord abnormalities. Development 129:3957–3964

    PubMed  CAS  Google Scholar 

  • Nandi KN, Knight DS, Beal JA (1993) Spinal neurogenesis and axon projection: A correlative study in the rat. J Comp Neurol 328:252–262

    PubMed  CAS  Google Scholar 

  • Nathan PW, Smith MC (1955) Long descending tracts in man. I. Review of present knowledge. Brain 78:248–303

    PubMed  CAS  Google Scholar 

  • Nathan PW, Smith MC (1981) The rubrospinal and central tegmental tracts in man. Brain 105:223–269

    Google Scholar 

  • Nathan PW, Smith MC, Deacon P (1990) The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain 113:303–324

    PubMed  Google Scholar 

  • Nathan PW, Smith MC, Deacon P (1996) Vestibulospinal, reticulospinal and descending propriospinal nerve fibers in man. Brain 119:1809–1833

    PubMed  Google Scholar 

  • Natsuyama E (1991) In utero behavior of human embryos at the spinal-cord stage of development. Biol Neonate 60(Suppl1):11–29

    PubMed  Google Scholar 

  • Norman MG, McGillivray BC, Kalousek DK, Hill A, Poskin KJ (1995) Congenital Malformations of the Brain. Pathologic, embryologic, clinical, radiologic and genetic aspects. Oxford University Press, New York

    Google Scholar 

  • Nornes HO, Carry M (1978) Neurogenesis in the spinal cord of the mouse: An autoradiographic analysis. Brain Res 159:1–16

    PubMed  CAS  Google Scholar 

  • Nyberg-Hansen R, Rinvik E (1963) Some comments on the pyramidal tracts, with special reference to its individual variations in man. Acta Neurol Scand 39:1–30

    Google Scholar 

  • Okado N (1980) Development of the human cervical spinal cord with reference to synapse formation in the motor nucleus. J Comp Neurol 191:495–513

    PubMed  CAS  Google Scholar 

  • Okado N (1981) Onset of synapse formation in the human spinal cord. J Comp Neurol 201:211–219

    PubMed  CAS  Google Scholar 

  • Okado N, Kojima T (1984) Ontogeny of the central nervous system, neurogenesis, fibre connections, synaptogenesis and myelination in the spinal cord. In: Prechtl HFR (ed) Continuity of Neural Functions from Prenatal to Postnatal Life. Spastics Int Med Publ, Oxford, pp 31–45

    Google Scholar 

  • Okado N, Kakimi S, Kojima T (1979) Synaptogenesis in the cervical cord of the human embryo: Sequence of synapse formation in a spinal reflex pathway. J Comp Neurol 184:491–517

    PubMed  CAS  Google Scholar 

  • O’Leary DDM, Koester SE (1993) Development of projection neuron types, axon pathways, and patterned projections of the mammalian cortex. Neuron 10:991–1006

    PubMed  CAS  Google Scholar 

  • O’Leary DDM, Stanfield BB (1986) A transient pyramidal tract projection from the visual cortex in the hamster and its removal by selective collateral elimination. Dev Brain Res 27:89–99

    Google Scholar 

  • O’Leary DDM, Bicknese AR, de Carlos JA, Heffner CD, Koester SE, Kutka LJ, Terashima T (1990) Target selection by cortical axons: Alternative mechanisms to establish axonal connections in the developing brain. Cold Spring Harbor Symp Quant Biol 55:453–468

    PubMed  CAS  Google Scholar 

  • Olivier E, Edgley SA, Armand J, Lemon RN (1997) An electrophysiological study of the postnatal development of the corticospinal system in the macaque monkey. J Neurosci 17:267–276

    PubMed  CAS  Google Scholar 

  • Olson L, Boreus LO, Seiger Ã… (1973) Histochemical demonstration and mapping of 5-hydroxytryptamine and catecholamine containing neuron systems in the human fetal brain. Z Anat Entw Gesch 139:259–282

    CAS  Google Scholar 

  • Op de Coul AAW, Slooff JL (1975) A clinical and neuropathologic study of a patiënt with abrachia (congenital absence of both arms). Clin Neurol Neurosurg 78:139–147

    PubMed  CAS  Google Scholar 

  • O’Rahilly R, Meyer DB (1979) The timing and sequence of events in the development of the human vertebral column during the embryonic period proper. Anat Embryol (Berl) 157:167–176

    PubMed  CAS  Google Scholar 

  • O’Rahilly R, Müller F (2001) Human Embryology & Teratology, 3rd ed. Wiley-Liss, New York

    Google Scholar 

  • O’Rahilly R, Müller F, Meyer DB (1980) The human vertebral column at the end of the embryonic period proper. 1. The column as a whole. J Anat (Lond) 131:565–575

    PubMed  CAS  Google Scholar 

  • O’Rahilly R, Müller F, Meyer DB (1983) The human vertebral column at the end of the embryonic period proper. 2. The occipitocervical region. J Anat (Lond) 136:181–195

    PubMed  CAS  Google Scholar 

  • O’Rahilly R, Müller F, Meyer DB (1990a) The human vertebral column at the end of the embryonic period proper. 3. The thoracicolumbar region. J Anat (Lond) 168:81–93

    PubMed  CAS  Google Scholar 

  • O’Rahilly R, Müller F, Meyer DB (1990b) The human vertebral column at the end of the embryonic period proper. 4. The sacrococcygeal region. J Anat (Lond) 168:95–111

    PubMed  CAS  Google Scholar 

  • Orentas DM, Hayes H, Dyer KL, Miller R (1999) Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 126:2419–2429

    PubMed  CAS  Google Scholar 

  • Ozaki S, Snider WD (1997) Initial trajectories of sensory axons toward laminar targets in the developing mouse spinal cord. J Comp Neurol 380:215–229

    PubMed  CAS  Google Scholar 

  • Pang D, Dias MS, Ahdab-Barmada M (1992) Split notochord malformation. Part I: A unified theory of embryogenesis for double spinal cord malformations. Neurosurgery 31:451–480

    PubMed  CAS  Google Scholar 

  • Parkinson D, del Bigio MR (1996) Posterior’ septum’ of the human spinal cord: Normal developmental variations, composition, and terminology. Anat Rec 244:572–578

    PubMed  CAS  Google Scholar 

  • Patten I, Kulesa P, Shen MM, Fraser S, Placzek M (2003) Distinct modes of floor plate induction in the chick embryo. Development 130:4809–4821

    PubMed  CAS  Google Scholar 

  • Pfaff S, Kintner C (1998) Neuronal diversification: Development of motor neuron subtypes. Curr Opin Neurobiol 8:27–36

    PubMed  CAS  Google Scholar 

  • Pick A (1890) Ueber ein abnormes Bündel der menschlichen Medulla oblongata. Arch Psychiatr Nervenkr 21:636–640

    Google Scholar 

  • Pierani A, Brenner-Morton S, Chiang C, Jessell TM (1999) A Sonic Hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell 97:903–915

    PubMed  CAS  Google Scholar 

  • Pierani A, Moran-Rivard L, Sunshine MJ, Littman DR, Goulding M, Jessell TM (2001) Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron 29:367–384

    PubMed  CAS  Google Scholar 

  • Placzek M, Dodd J, Jessell TM (2000) The case for floor plate induction by the notochord. Curr Opin Neurobiol 10:15–22

    PubMed  CAS  Google Scholar 

  • Price SR, Briscoe J (2004) The gene ratio-and diversification of spinal motor neurons: Signals and responses. Mech Dev 121:1103–1115

    PubMed  CAS  Google Scholar 

  • Puelles L, Verney C (1998) Early neuromeric distribution of tyrosine-hydroxylase-immunoreactive neurons in human embryos. J Comp Neurol 394:283–308

    PubMed  CAS  Google Scholar 

  • Rajaofetra N, Sandillon F, Geffard M, Privat A (1989) Pre-and postnatal ontogeny of serotonergic projections to the rat spinal cord. J Neurosci Res 22:305–321

    PubMed  CAS  Google Scholar 

  • Rajaofetra N, Poulat P, Marlier L, Geffard M, Privat A (1992) Pre-and postnatal development of noradrenergic projections to the rat spinal cord: an immunocytochemical study. Dev Brain Res 67:237–246

    CAS  Google Scholar 

  • Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96:415–495

    Google Scholar 

  • Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379

    PubMed  CAS  Google Scholar 

  • Rhines R, Windle WF (1941) The early development of the fasciculus longitudinalis medialis and associated secondary neurons in the rat, cat and man. J Comp Neurol 75:165–189

    Google Scholar 

  • Rickenbacher J, Landolt AM, Theiler K (1982) Von Lanz/Wachsmuth-Praktische Anatomie, Band II/7: Rücken. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Robain O, Floquet C, Heldt N, Rozenberg F (1988) Hemimegalencephaly: a clinicopathological study of four cases. Neuropathol Appl Neurobiol 14:125–135

    PubMed  CAS  Google Scholar 

  • Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz i Altaba A, Tanabe Y, Placzek M, Edlund T, Jessell TM, Dodd J (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76:761–775

    PubMed  CAS  Google Scholar 

  • Roessmann U, Hori A (1985) Agyria (lissencephaly) with anomalous pyramidal crossing. Case report and review of literature. J Neurol Sci 69:357–364

    PubMed  CAS  Google Scholar 

  • Rokos J (1975) Pathogenesis of diastematomyelia and spina bifida. J Pathol 117:155–161

    PubMed  CAS  Google Scholar 

  • Ruiz i Altaba A, Nguyên V, Palma V (2003) The emergent design of the neural tube: Prepattern, SHH morphogen and GLI code. Curr Opin Genet Dev 13:513–521

    PubMed  CAS  Google Scholar 

  • Sabatier C, Plump AS, Ma L, Brose K, Tamada A, Murakami F, Lee EY-HP, Tessier-Lavigne M (2004) The divergent Robo family protein Rig-1/Robo3 is a negative regulator of Slit responsiveness required for midline crossing by commissural axons. Cell 117:157–169

    PubMed  CAS  Google Scholar 

  • Sanes JR, Yamagata M (1999) Formation of lamina-specific synaptic connections. Curr Opin Neurobiol 9:79–87

    PubMed  CAS  Google Scholar 

  • Sasaki S, Iwata M (1998) Characterizations of heterotopic neurons in the spinal cord of amyotrophic lateral sclerosis patients. Acta Neuropathol 95:367–372

    PubMed  CAS  Google Scholar 

  • Saueressig H, Burrill J, Goulding M (1999) Engrailed-1 and netrin-1 regulate axon pathfinding by association interneurons that project to motor neurons. Development 126:4201–4212

    PubMed  CAS  Google Scholar 

  • Schneiderling W (1938) Unvollkommene dorso-ventrale Verdoppelung des Rückenmarkes. Virchows Arch Pathol Anat Physiol 31:479–489

    Google Scholar 

  • Schoenen J, Faull RLM (1990) Spinal cord: Cytoarchitectural, dendroarchitectural, and myeloarchitectural organization. In:Paxinos G (ed) The Human Nervous System. Academic, San Diego, CA, pp 19–53

    Google Scholar 

  • Schreyer DJ, Jones EG (1982) Growth and target finding by axons of the corticospinal tract in prenatal and postnatal rats. Neuroscience 7:1837–1853

    PubMed  CAS  Google Scholar 

  • Schreyer DJ, Jones EG (1988) Axon elimination in the developing corticospinal tract of the rat. Dev Brain Res 38:103–119

    Google Scholar 

  • Schwab ME, Schnell L (1991) Channeling of developing rat corticospinal tract axons by myelin-associated neuite growth inhibitors. J Neurosci 11:709–721

    PubMed  CAS  Google Scholar 

  • Sharma K, Frank E (1998) Sensory axons are guided by local cues in the developing dorsal spinal cord. Development 125:635–643

    PubMed  CAS  Google Scholar 

  • Sharma K, Peng C-Y (2001) Spinal motor circuits: Merging development and function. Neuron 29:321–324

    PubMed  CAS  Google Scholar 

  • Sherman JL, Barkovich AJ, Citrin CM (1986) The MR appearances of syringomyelia: New observations. Am J Neuroradiol 7:985–995

    Google Scholar 

  • Silos-Santiago I, Snider WD (1992) Development of commissural neurons in the embryonic rat spinal cord. J Comp Neurol 325:514–526

    PubMed  CAS  Google Scholar 

  • Silos-Santiago I, Snider WD (1994) Development of interneurons with ipsilateral projections in embryonic rat spinal cord. J Comp Neurol 342:221–231

    PubMed  CAS  Google Scholar 

  • Sims TJ, Vaughn JE (1979) The generation of neurons involved in an early reflex pathway of embryonic rat spinal cord. J Comp Neurol 183:707–720

    PubMed  CAS  Google Scholar 

  • Skandalakis JE, Gray SW (1994) Embryology for Surgeons, 3rd ed. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • Snider WD, Zhang L, Yusoof S, Gorukanti N, Tsering C (1992) Interactions between dorsal root axons and their target motor neurons in developing mammalian spinal cord. J Neurosci 12:3494–3508

    PubMed  CAS  Google Scholar 

  • Spiller WG (1906) Syringomyelia, extending from the sacral region of the spinal cord through the medulla oblongata, right side of the pons and right cerebral peduncle to the upper part of the right internal capsule (syringobulbia). Br Med J 2:1017–1021

    Google Scholar 

  • Stanfield BB (1992) The development of the corticospinal projection. Prog Neurobiol 38:169–202

    PubMed  CAS  Google Scholar 

  • Stanfield BB, O’Leary DDM (1985) The transient corticospinal projection from the occipital cortex during the postnatal development of the rat. J Comp Neurol 238:236–248

    PubMed  CAS  Google Scholar 

  • Streeter GF (1919) Factors involved in the formation of the filum terminale. Am J Anat 25:1–11

    Google Scholar 

  • Swank RL (1934) The relationship between the circumolivary pyramidal fascicles and the pontobulbar body in man. J Comp Neurol 60:309–317

    Google Scholar 

  • Swanson AG, Buchan GC, Alvord EC Jr (1965) Anatomic changes in congenital insensitivity to pain. Arch Neurol 12:12–18

    PubMed  CAS  Google Scholar 

  • ten Donkelaar HJ (2000) Development and regenerative capacity of descending supraspinal pathways in tetrapods: A comparative approach. Adv Anat Embryol Cell Biol 145:1–145

    Google Scholar 

  • ten Donkelaar HJ, Wesseling P, Semmekrot BA, Liem KD, Tuerlings J, Cruysberg JRM, de Wit PEJ (1999) Severe, non X-linked congenital miocrocephaly with absence of the pyramidal tracts in two siblings. Acta Neuropathol (Berl) 98:203–211

    PubMed  Google Scholar 

  • ten Donkelaar HJ, Hoevenaars F, Wesseling P (2000) A case of Joubert’s syndrome with extensive cerebral malformations. Clin Neuropathol 19:85–93

    PubMed  Google Scholar 

  • ten Donkelaar HJ, Willemsen MAAP, van der Heijden I, Beems T, Wesseling P (2002) A spinal intradural enterogenous cyst with well-differentiated muscularis propria. Acta Neuropathol (Berl) 104:538–542

    PubMed  Google Scholar 

  • ten Donkelaar HJ, Lammens M, Wesseling P, Hori A, Keyser A, Rotteveel J (2004) Development and malformations of the human pyramidal tract. J Neurol 251:1429–1442

    PubMed  Google Scholar 

  • Terashima T (1995a) Anatomy, development and lesion-induced plasticity of rodent corticospinal tract. Neurosci Res 22:139–161

    PubMed  CAS  Google Scholar 

  • Terashima T (1995b) Course and collaterals of corticospinal fibers arising from the sensorimotor cortex in the reeler mouse. Dev Neurosci 17:8–19

    PubMed  CAS  Google Scholar 

  • Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1983) Distribution and morphology of corticospinal tract neurons in reeler mouse cortex by the retrograde HRP method. J Comp Neurol 218:314–326

    PubMed  CAS  Google Scholar 

  • Theiler K (1988) Vertebral malformations. Adv Anat Embryol Cell Biol 112:1–99

    PubMed  CAS  Google Scholar 

  • Tohyama L, Lee VM-Y, Rorke LB, Trojanowski JQ (1991) Molecular milestones that signal axonal maturation and the commitment of human spinal cord precursor cells to the neuronal or glial phenotype in development. J Comp Neurol 310:285–299

    PubMed  CAS  Google Scholar 

  • Töndury G (1958) Entwicklungsgeschichte und Fehlbildungen der Wirbelsäule. Hippokrates, Stuttgart

    Google Scholar 

  • Tsuchida T, Ensini M, Morton SB, Baldassare M, Edlund T, Jessell TM, Pfaff SL (1994) Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79:957–970

    PubMed  CAS  Google Scholar 

  • van der Knaap MS, Valk J (1995) Magnetic Resonance of Myelin, Myelination and Myelin Disorders, 2nd ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vaughn JE, Sims T, Nakashima M (1977) A comparison of the early development of axodendritic and axosomatic synapses upon embryonic mouse spinal motor neurons. J Comp Neurol 175:79–100

    PubMed  CAS  Google Scholar 

  • Veeneklaas GMH (1952) Pathogenesis of intrathoracic gastrogenic cysts. Am J Dis Child 83:500–507

    CAS  Google Scholar 

  • Verbout AJ (1985) The development of the vertebral column. Adv Anat Embryol Cell Biol 90:1–122

    PubMed  CAS  Google Scholar 

  • Verhaart WLC (1934) Zehn Fällen des Pickschen Bündels. Psychiatr Neurol Bl 38:85–95

    Google Scholar 

  • Verhaart WJC (1935) Die aberrierenden Pyramidenfasern bei Menschen und Affen. Schweiz Arch Neurol 36:170–190

    Google Scholar 

  • Verhaart WJC (1950) Hypertrophy of pes pedunculi and pyramid as result of degeneration of contralateral corticofugal fiber tracts. J Comp Neurol 92:1–15

    Google Scholar 

  • Verhaart WJC (1970) Comparative Anatomical Aspects of the Mammalian Brain Stem and the Cord. Van Gorcum, Assen, The Netherlands

    Google Scholar 

  • Verhaart WJC, Kramer W (1952) The uncrossed pyramidal tract. Acta Psychiatr Neurol Scand 27:181–200

    PubMed  CAS  Google Scholar 

  • Verney C, Zecevic N, Nikolic B, Alvarez C, Berger B (1991) Early evidence of catecholaminergic cell groups in 5-and 6-week-old human embryos using tyrosine hydroxylase and dopamine-,-hydroxylase immunocytochemistry. Neurosci Lett 131:121–124

    PubMed  CAS  Google Scholar 

  • Vinters HV, Gilbert JJ (1981) Neurenteric cysts of the spinal cord mimicking multiple sclerosis. Can J Neurol Sci 8:159–161

    PubMed  CAS  Google Scholar 

  • Vogel H, Halpert D, Horoupian DS (1990) Hypoplasia of posterior spinal roots and dorsal spinal tracts with arthrogryposis multiplex congenita. Acta Neuropathol (Berl) 79:692–696

    PubMed  CAS  Google Scholar 

  • von Sántha K (1930) Ueber das Verhalten des Kleinhirns in einem Falle von endogen-afamiliärer Idiotie. Zur Differentialdiagnose der Marieschen und der sonstigen endogenen Kleinhirnerkrankungen nebst Beitrag zur Lehre der Diplomyelie. Z Neurol Psychiatr 123:717–793

    Google Scholar 

  • Weidenheim KM, Kress Y, Epshteyn I, Rashbaum WK, Lyman WD (1992) Early myelination in the human fetal lumbosacral spinal cord: Characterization by light and electron microscopy. J Neuropathol Exp Neurol 51:142–149

    PubMed  CAS  Google Scholar 

  • Weidenheim KM, Epshteyn I, Rashbaum WK, Lyman WD (1993) Neuroanatomical localization of myelin basic protein in the late first and early second trimester human foetal spinal cord and brainstem. J Neurocytol 22:507–516

    PubMed  CAS  Google Scholar 

  • Weidenheim KM, Bodhireddy SR, Rashbaum WK, Lyman WD (1996) Temporal and spatial expression of major myelin proteins in the fetal spinal cord during the second trimester. J Neuropathol Exp Neurol 55:734–745

    PubMed  CAS  Google Scholar 

  • Wenner P, O’Donovan MJ (1999) Identification of an interneuronal population that mediates recurrent inhibition of motor neurons in the developing chick spinal cord. J Neurosci 19:7557–7567

    PubMed  CAS  Google Scholar 

  • Wenner P, Matise MP, Joyner A, O’Donovan MJ (1998) Physiological and molecular characterization of interneurons in the developing spinal cord. Ann NY Acad Sci 860:425–427

    PubMed  CAS  Google Scholar 

  • Wentworth LE (1984a) The development of the cervical spinal cord of the mouse embryo. I. A Golgi analysis of ventral root neuron differentiation. J Comp Neurol 222:81–95

    PubMed  CAS  Google Scholar 

  • Wentworth LE (1984b) The development of the cervical spinal cord of the mouse embryo. II. A Golgi analysis of sensory, commissural, and association cell differentiation. J Comp Neurol 222:96–115

    PubMed  CAS  Google Scholar 

  • Wessels WJT, Feirabend HKP, Marani E (1991) Development of projections of primary afferent fibers from the hindlimb to the gracile nucleus: A WGA-HRP study in the rat. Dev Brain Res 63:265–279

    CAS  Google Scholar 

  • Willis WD Jr, Coggeshall RE (1991) Sensory Mechanisms of the Spinal Cord, 2nd ed. Plenum, New York

    Google Scholar 

  • Windle WF (1970) Development of neural elements in human embryos of four to seven weeks gestation. Exp Neurol Suppl 5:44–83

    Google Scholar 

  • Windle WF, Fitzgerald JE (1937) Development of the spinal reflex mechanism in human embryos. J Comp Neurol 67:493–509

    Google Scholar 

  • Windle WF, Fitzgerald JE (1942) Development of human mesencephalic trigeminal root and related neurons. J Comp Neurol 77:597–608

    Google Scholar 

  • Winkler C (1926) De bouw van het zenuwstelsel, IV. Bohn, Haarlem, The Netherlands

    Google Scholar 

  • WozÅ„iak W, O’Rahilly R (1982) An electron microscopic study of myelination of pyramidal fibers at the level of the pyramidal decussation. J Hirnforsch 23:331–342

    PubMed  Google Scholar 

  • Yachnis AT, Rorke LB (1999) Neuropathology of Joubert’s syndrome. J Child Neurol 14:655–659

    PubMed  CAS  Google Scholar 

  • Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional Development of the Brain in Early Life. Blackwell, Oxford, pp 3–70

    Google Scholar 

  • Yakovlev PI, Rakic P (1966) Patterns of decussation of bulbar pyramids and distribution of pyramidal tracts on two sides of the spinal cord. Trans Am Neurol Assoc 91:366–367

    Google Scholar 

  • Yokoyama N, Romero MI, Cowan CA, Galvan P, Heimbacher F, Charnay P, Parada LF, Henkemeyer M (2001) Forward signaling mediated by Ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline. Neuron 29:85–97

    PubMed  CAS  Google Scholar 

  • Zecevic N, Verney C (1995) Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervation of the cerebral cortex. J Comp Neurol 351:509–535

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J., Hori, A. (2006). Development and Developmental Disorders of the Spinal Cord. In: Clinical Neuroembryology. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34659-7_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-34659-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29140-4

  • Online ISBN: 978-3-540-34659-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics