Skip to main content

Extending the Range and Applicability of the Loose Coupling Approach for FSI Simulations

  • Conference paper
Fluid-Structure Interaction

Abstract

Several algorithms for fluid-structure interaction are described. All of them are useful for the loose coupling of fluid and structural dynamics codes. The first class of algorithms considers the loose coupling of implicit time-marching codes. Of these, a predictor-corrector algorithm that may be interpreted as a Jacobi iteration with block-diagonal terms was found to be a good compromise of simplicity, generality and speed. The second class of algorithms treats the displacement of the surface of the structure that is in contact with the fluid. It is shown that a straightforward treatment of the displacements for arbitrary choice of timesteps can lead to instabilities. For optimal stability, at each timestep the ending time of the fluid should be just beyond the ending time of the structure. The third class of algorithms treats the movement of the flow mesh in an ALE setting. The use of a projective prediction of mesh velocities, as well as linelet preconditioning for the resulting PCG system can reduce significantly the effort required. Examples are included that show the effectiveness of the proposed procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Baum, H. Luo, R. Löhner, C. Yang, D. Pelessone and C. Charman: A Coupled Fluid/Structure Modeling of Shock Interaction with a Truck. AIAA- 96–0795 (1996).

    Google Scholar 

  2. J.D. Baum, H. Luo, E. Mestreau, R. Löhner, D. Pelessone and C. Charman: A Coupled CFD/CSD Methodology for Modeling Weapon Detonation and Fragmentation. AIAA-99–0794 (1999).

    Google Scholar 

  3. E. Brakkee, K. Wolf, D.P. Ho and A. Schüller: The COupled COmmunications LIBrary. pp. 155–162 in Proc. Fifth Euromicro Workshop on Parallel and Distributed Processing, London, UK, January 22–24, 1997, IEEE Computer Society Press, Lo Alamitos, Ca. (1997).

    Google Scholar 

  4. J.R. Cebral and R. Löhner: Conservative Load Projection and Tracking for Fluid-Structure Problems. AIAA J. 35(4) (1997) 687–692.

    MATH  Google Scholar 

  5. J.R. Cebral and R. Löhner: Fluid-Structure Coupling: Extensions and Improvements. AIAA-97–0858 (1997).

    Google Scholar 

  6. COCOLIB Deliverable 1.1: Specification of the COupling COmmunications LIBrary. CISPAR ESPRIT Project 20161, See http://www.pallas.de/cispar/ pages/docu.htm (1997).

    Google Scholar 

  7. For CFD: Fluent, Star-CD, CFX, Pam-Flow, Cart3d, Arc3d, CFL3D, etc.; for CFD: NASTRAN, ANSYS, ABAQUS, Pam-Solid, Cosmic-NASTRAN, etc.

    Google Scholar 

  8. P.F. Fischer: Projection Techniques for Iterative Solution of Ax=b With Successive Right-Hand Sides. Comp. Meth. Appl. Mech. Eng. 163 (1998) 193–204.

    Article  MATH  Google Scholar 

  9. GRISSLi: Numerical Simulation of Coupled Problems on Parallel Computers; BMBF-Project, Contract No. 01 IS 512 A-C/GRISSLi, Germany, See http://www.gmd.de/SCAI/scicomp/grissli/ (1998).

    Google Scholar 

  10. B. HĂĽbner, E. Walhorn and D. Dinkler: Numerical Investigations to Bridge Aeroelasticity. In Proc. 5th World Cong. Comp. Mech. (H.A. Mang, F.G. Rammerstorfer and J. Eberhardsteiner eds.) Vienna (2002). (see also: http://wccm.tuwien.ac.at/publications/Papers/fp81407.pdf)

    Google Scholar 

  11. B. Hübner, E. Walhorn and D. Dinkler: A Monolithic Approach to Fluid- Structure Interaction Using Space-time Finite Elements. Comp. Meth. Appl. Mech. Eng. 193 (2004) 2087–2104.

    Article  MATH  Google Scholar 

  12. G.P. Guruswamy and C. Byun: Fluid-Structural Interactions Using Navier- Stokes Flow Equations Coupled with Shell Finite Element Structures. AIAA- 93–3087 (1993).

    Google Scholar 

  13. M. Lesoinne and Ch. Farhat: Geometric Conservation Laws for Flow Problems With Moving Boundaries and Deformable Meshes, and Their Impact on Aeroelastic Computations. Comp. Meth. Appl. Mech. Eng. 134 (1996) 71–90.

    Article  MATH  Google Scholar 

  14. R. Löhner: Three-Dimensional Fluid-Structure Interaction Using a Finite Element Solver and Adaptive Remeshing. Computing Systems in Engineering 1(2–4) (1990) 257–272.

    Article  Google Scholar 

  15. R. Löhner, C. Yang, J. Cebral, J.D. Baum, H. Luo, D. Pelessone and C. Charman: Fluid-Structure Interaction Using a Loose Coupling Algorithm and Adaptive Unstructured Grids; AIAA-95–2259 [Invited] (1995).

    Google Scholar 

  16. R. Löhner and Chi Yang: Improved ALE Mesh Velocities for Moving Bodies. Comm. Num. Meth. Eng. 12 (1996) 599–608.

    Article  MATH  Google Scholar 

  17. R. Löhner, C. Yang, J. Cebral, J.D. Baum, H. Luo, D. Pelessone and C. Charman: Fluid-Structure-Thermal Interaction Using a Loose Coupling Algorithm and Adaptive Unstructured Grids. AIAA-98–2419 [Invited] (1998).

    Google Scholar 

  18. R. Löhner, C. Yang, J.D. Baum, H. Luo, D. Pelessone and C. Charman: The Numerical Simulation of Strongly Unsteady Flows With Hundreds of Moving Bodies. Int. J. Num. Meth. Fluids 31 (1999) 113–120.

    Article  MATH  Google Scholar 

  19. R. Löhner: Applied CFD Techniques; J. Wiley & Sons (2001).

    Google Scholar 

  20. R. Löhner, J.D. Baum, E.L. Mestreau, D. Sharov, Ch. Charman and D. Pelessone: Adaptive Embedded Unstructured Grid Methods; AIAA-03–1116 (2003).

    Google Scholar 

  21. R. Löhner, J. Cebral, C. Yang, J.D. Baum, E. Mestreau, C. Charman and D. Pelessone: Large-Scale Fluid-Structure Interaction Simulations. Computing in Science and Engineering (CiSE) May/June’04, (2004) 27–37.

    Google Scholar 

  22. R. Löhner: Multistage Explicit Advective Prediction for Projection-Type Incompressible Flow Solvers. J. Comp. Phys. 195 (2004) 143–152.

    Article  MATH  Google Scholar 

  23. N. Maman and C. Farhat: Matching Fluid and Structure Meshes for Aeroelastic Computations: A Parallel Approach. Computers and Structures 54(4) (1995) 779–785.

    Article  Google Scholar 

  24. E. Nielsen and W. Anderson: Recent Improvements in Aerodynamic Design and Optimization on Unstructured Meshes. AIAA-01–0596 (2001).

    Google Scholar 

  25. O. Soto, R. Löhner and F. Camelli: A Linelet Preconditioner for Incompressible Flows. Int. J. Num. Meth. Heat and Fluid Flow 13(1) (2003) 133–147.

    Article  MATH  Google Scholar 

  26. O. Soto, R. Löhner and C. Yang: An Adjoint-Based Design Methodology for CFD Problems; Int. J. Num. Meth. Heat and Fluid Flow 14 (2004) 734–759.

    Article  MATH  Google Scholar 

  27. E.A. Thornton and P. Dechaumphai: Coupled Flow, Thermal and Structural Analysis of Aerodynamically Heated Panels. J. Aircraft 25(11) (1988) 1052–1059.

    Google Scholar 

  28. E. Walhorn, B. Hübner, A. Kölke and D. Dinkler: Fluid-Structure Coupling Within a Monolithic Model Involving Free Surface Flows. Proc. 2nd M.I.T. Conf. Comp. Fluid and Solid Mech. (K.J. Bathe ed.), Elsevier Science (2003).

    Google Scholar 

  29. O.C. Zienkiewicz: The Finite Element Method; McGraw Hill (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Löhner, R., Cebral, J.R., Yang, C., Baum, J.D., Mestreau, E.L., Soto, O. (2006). Extending the Range and Applicability of the Loose Coupling Approach for FSI Simulations. In: Bungartz, HJ., Schäfer, M. (eds) Fluid-Structure Interaction. Lecture Notes in Computational Science and Engineering, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-34596-5_4

Download citation

Publish with us

Policies and ethics