Skip to main content

Spacetime Metric from Local and Linear Electrodynamics: A New Axiomatic Scheme

  • Chapter
Special Relativity

Part of the book series: Lecture Notes in Physics ((LNP,volume 702))

Abstract

We consider spacetime to be a 4-dimensional differentiable manifold that can be split locally into time and space. No metric, no linear connection are assumed. Matter is described by classical fields/fluids. We distinguish electrically charged from neutral matter. Electric charge and magnetic flux are postulated to be conserved. As a consequence, the inhomogeneous and the homogeneous Maxwell equations emerge expressed in terms of the excitation H = (H,D) and the field strength F = (E,B), respectively. H and F are assumed to fulfill a local and linear “spacetime relation” with 36 constitutive functions. The propagation of electromagnetic waves is considered under such circumstances in the geometric optics limit. We forbid birefringence in vacuum and find the light cone including its Lorentzian signature. Thus the conformally invariant part of the metric is recovered. If one sets a scale, one finds the pseudo-Riemannian metric of spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Audretsch and C. Lämmerzahl, A new constructive axiomatic scheme for the geometry of space-time In [40] pp. 21–39 (1994).

    Google Scholar 

  2. A.O. Barut and R. Rączka, Theory of Group Representations and Applications (PWN — Polish Scientific Publishers, Warsaw, 1977).

    MATH  Google Scholar 

  3. R. Beig, Concepts of Hyperbolicity and Relativistic Continuum Mechanics, arXiv.org/gr-qc/0411092.

    Google Scholar 

  4. M. Blagojević, Gravitation and Gauge Symmetries (IOP Publishing, Bristol, 2002).

    Book  MATH  Google Scholar 

  5. U. Bonse and T. Wroblewski, Dynamical diffraction effects in noninertial neutron interferometry, Phys. Rev. D30 (1984) 1214–1217.

    ADS  Google Scholar 

  6. C.H. Brans, The roots of scalar-tensor theory: An approximate history, arXiv.org/gr-qc/0506063.

    Google Scholar 

  7. R. Colella, A.W. Overhauser, and S.A. Werner Observation of Gravitationally Induced Quantum Interference, Phys. Rev. Lett. 34 (1975) 1472–1474. Spacetime Metric from Local and Linear Electrodynamics 185

    Article  ADS  Google Scholar 

  8. D.H. Delphenich, On the axioms of topological electromagnetism, Ann. Phys. (Leipzig) 14 (2005) 347–377; updated version of arXiv.org/hep-th/0311256.

    Google Scholar 

  9. D.H. Delphenich, Symmetries and pre-metric electromagnetism, Ann. Phys. (Leipzig) 14 (2005) issue 11 or 12, to be published.

    Google Scholar 

  10. I.E. Dzyaloshinskii, On the magneto-electrical e.ect in antiferromagnets, J. Exptl. Theoret. Phys. (USSR) 37 (1959) 881–882 [English transl.: Sov. Phys. JETP 10 (1960) 628–629].

    Google Scholar 

  11. D.G.B. Edelen, A metric free electrodynamics with electric and magnetic charges, Ann. Phys. (NY) 112 (1978) 366–400.

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Ehlers, F.A.E. Pirani, and A. Schild, The geometry of free fall and light propagation, in: General Relativity, papers in honour of J.L. Synge, L. O’Raifeartaigh, ed. (Clarendon Press, Oxford, 1972), pp. 63–84.

    Google Scholar 

  13. A. Einstein, Zur Elektrodynamik bewegter Körper, Ann. Phys. (Leipzig) 17 (1905) 891–921. English translation in [39].

    MATH  ADS  Google Scholar 

  14. S. Fray, C. Alvarez Diez, T. W. Hänsch and M. Weitz, Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle, Phys. Rev. Lett. 93 (2004) 240404 (4 pages); arXiv.org/physics/0411052.

    Google Scholar 

  15. C.D. Froggatt and H.B. Nielsen, Derivation of Poincaré invariance from general quantum field theory, Ann. Phys. (Leipzig) 14 (2005) 115–147 [Special issue commemorating Albert Einstein].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Y. Fujii and K.-I. Maeda, The Scalar-Tensor Theory of Gravitation (Cambridge University Press, Cambridge, 2003).

    MATH  Google Scholar 

  17. D. Giulini, The Poincaré group: Algebraic, representation-theoretic, and geometric aspects, these Proceedings (2005).

    Google Scholar 

  18. M. Haugan and C. Lämmerzahl, On the experimental foundations of the Maxwell equations, Ann. Phys. (Leipzig) 9 (2000) Special Issue, SI–119-SI–124.

    Google Scholar 

  19. F.W. Hehl and W.-T. Ni: Inertial effects of a Dirac particle. Phys. Rev. D42 (1990) 2045–2048.

    ADS  Google Scholar 

  20. F.W. Hehl and Yu.N. Obukhov, Foundations of Classical Electrodynamics — Charge, Flux, and Metric (Birkhäuser, Boston, MA, 2003).

    MATH  Google Scholar 

  21. F.W. Hehl and Yu.N. Obukhov, Electric/magnetic reciprocity in premetric electrodynamics with and without magnetic charge, and the complex electromagnetic field, Phys. Lett. A323 (2004) 169–175; arXiv.org/physics/0401083.

    Google Scholar 

  22. F.W. Hehl and Yu. N. Obukhov, Dimensions and units in electrodynamics, Gen. Rel. Grav. 37 (2005) 733–749; arXiv.org/physics/0407022.

    Google Scholar 

  23. F.W. Hehl and Yu.N. Obukhov, Linear media in classical electrodynamics and the Post constraint, Phys. Lett. A334 (2005) 249–259; arXiv.org/physics/ 0411038.

    Google Scholar 

  24. Y. Itin, Caroll-Field-Jackiw electrodynamics in the pre-metric framework, Phys. Rev. D70 (2004) 025012 (6 pages); arXiv/org/hep-th/0403023.

    Google Scholar 

  25. Y. Itin and F.W. Hehl, Is the Lorentz signature of the metric of spacetime electromagnetic in origin? Ann. Phys. (NY) 312 (2004) 60–83; arXiv.org/gr-qc/0401016.

    Google Scholar 

  26. G. Kaiser, Energy-momentum conservation in pre-metric electrodynamics with magnetic charges, J. Phys. A37 (2004) 7163–7168.

    MathSciNet  ADS  Google Scholar 

  27. M. Kasevich and S. Chu, Atomic interferometry using stimulated Raman transitions, Phys. Rev. Lett. 67 (1991) 181–184.

    Article  ADS  Google Scholar 

  28. W. Ketterle, When atoms behave as waves: Bose-Einstein condensation and the atom laser (Noble lecture 2001), http://nobelprize.org/physics/laureates/2001/ketterle-lecture.pdf .

    Google Scholar 

  29. R.M. Kiehn, Plasmas and Non Equilibrium Electrodynamics 2005 (312 pages), see http://www22.pair.com/csdc/download/plasmas85h.pdf.

    Google Scholar 

  30. W. Kopczyński, J.D. McCrea and F.W. Hehl, The Weyl group and its current. Phys. Lett. A128 (1988) 313–317.

    ADS  Google Scholar 

  31. C. Lämmerzahl, A characterisation of the Weylian structure of space-time by means of low velocity tests, Gen. Rel. Grav. 33 (2001) 815–831; arXiv.org/gr-qc/0103047.

    Google Scholar 

  32. C. Lämmerzahl, A. Camacho, and A. Macías, Reasons for the electromagnetic field to obey Maxwell’s equations, submitted to J. Math. Phys. (2005).

    Google Scholar 

  33. C. Lämmerzahl and F.W. Hehl, Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics, Phys. Rev. D70 (2004) 105022 (7 pages); arXiv.org/gr-qc/0409072.

    Google Scholar 

  34. C. Lämmerzahl, A. Macías, and H. Müller, Lorentz invariance violation and charge (non)conservation: A general theoretical frame for extensions of the Maxwell equations, Phys. Rev. D71 (2005) 025007 (15 pages).

    ADS  Google Scholar 

  35. I.V. Lindell, Differential Forms in Electromagnetics (IEEE Press, Piscataway, NJ, and Wiley-Interscience, 2004).

    Book  MATH  Google Scholar 

  36. L.V. Lindell, The class of bi-anisotropic IB-media, J. Electromag. Waves Appl., to be published (2005).

    Google Scholar 

  37. I.V. Lindell and A.H. Sihvola, Perfect electromagnetic conductor, J. Electromag. Waves Appl. 19 (2005) 861–869; arXiv.org/physics/0503232.

    Google Scholar 

  38. I.V. Lindell, A.H. Sihvola, S.A. Tretyakov, A.J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, Boston, MA, 1994).

    Google Scholar 

  39. H.A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The Principle of Relativity. A collection of original memoirs. Translation from the German (Dover, New York, 1952).

    MATH  Google Scholar 

  40. U. Majer and H.-J.Schmidt (eds.), Semantical Aspects of Spacetime Theories (BIWissenschaftsverlag, Mannheim 1994).

    Google Scholar 

  41. M.-O. Mewes et al., Output Coupler for Bose-Einstein Condensed Atoms, Phys. Rev. Lett. 78 (1997) 582–585.

    Article  ADS  Google Scholar 

  42. V.V. Nesvizhevsky et al., Quantum states of neutrons in the Earth’s gravitational field, Nature 415 (2002) 297–299.

    Article  ADS  Google Scholar 

  43. V.V. Nesvizhevsky et al., Measurement of quantum states of neutrons in the Earth’s gravitational field, Phys. Rev. D67 (2003) 102002 (9 pages); arXiv.org/hepph/ 0306198.

    Google Scholar 

  44. W.-T. Ni, Equivalence principles and precision experiments. In Precision Measurement and Fundamental Constants II, B.N. Taylor, W.D. Phillips, eds. Nat. Bur. Stand. (US) Spec. Publ. 617 (US Government Printing Office, Washington, DC, 1984) pp. 647–651.

    Google Scholar 

  45. Yu.N. Obukhov and F.W. Hehl, Possible skewon effects on light propagation, Phys. Rev. D70 (2004) 125015 (14 pages); arXiv.org/physics/0409155.

    Google Scholar 

  46. Yu.N. Obukhov and F.W. Hehl, Measuring a piecewise constant axion field in classical electrodynamics, Phys. Lett. A341 (2005) 357–365; arXiv.org/ physics/0504172.

    Google Scholar 

  47. V. Perlick, Observer fields in Weylian spacetime models, Class. Quantum Grav. 8 (1991) 1369–1385.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. V. Perlick, Ray optics, Fermat’s principle, and applications to general relativity, Lecture Notes in Physics (Springer) m61 (2000) 220 pages.

    Google Scholar 

  49. F.A.E. Pirani and A. Schild, Conformal geometry and the interpretation of the Weyl tensor, in: Perspectives in Geometry and Relativity. Essays in honor of V. Hlavatý. B. Hoffmann, editor (Indiana University Press, Bloomington, 1966) pp. 291–309.

    Google Scholar 

  50. E.J. Post, Formal Structure of Electromagnetics – General Covariance and Electromagnetics (North Holland, Amsterdam, 1962, and Dover, Mineola, New York, 1997).

    Google Scholar 

  51. R.A. Puntigam, C. Lämmerzahl and F.W. Hehl, Maxwell’s theory on a post- Riemannian spacetime and the equivalence principle, Class. Quant. Grav. 14 (1997) 1347–1356; arXiv.org/gr-qc/9607023.

    Google Scholar 

  52. H. Rauch and S.A. Werner, Neutron Interferometry, Lessons in experimental quantum mechanics (Clarendon Press, Oxford, 2000).

    Google Scholar 

  53. G.F. Rubilar, Linear pre-metric electrodynamics and deduction of the lightcone, Thesis (University of Cologne, June 2002); see Ann. Phys. (Leipzig) 11 (2002) 717–782.

    Google Scholar 

  54. U. Schelb, Zur physikalischen Begründung der Raum-Zeit-Geometrie, Habilitation thesis (Univ. Paderborn, 1997).

    Google Scholar 

  55. J.A. Schouten, Ricci-Calculus, 2nd ed. (Springer, Berlin, 1954).

    MATH  Google Scholar 

  56. J. Schröter, A new formulation of general relativity. Part I. Pre-radar charts as generating functions for metric and velocity. Part II. Pre-radar charts as generating functions in arbitrary space-times. Part III. GTR as scalar field theory (altogether 58 pages). Preprint, Univ. Paderborn (July 2005).

    Google Scholar 

  57. B.D.H. Tellegen, The gyrator, a new electric network element, Philips Res. Rep. 3 (1948) 81–101.

    MathSciNet  Google Scholar 

  58. B.D.H. Tellegen, The gyrator, an electric network element, in: Philips Technical Review 18 (1956/57) 120–124. Reprinted in H.B.G. Casimir and S. Gradstein (eds.) An Anthology of Philips Research. (Philips’ Gloeilampenfabrieken, Eindhoven, 1966) pp. 186–190.

    Google Scholar 

  59. S.I. Tertychniy [National Research Institute for Physical, Technical, and Radio-Technical Measurements (VNIIFTRI), 141570 Mendeleevo, Russia. Email: bpt97@mendeleevo.ru] provided the Mathematica programs for constructing the figures of the quartic Fresnel surface.

    Google Scholar 

  60. P. Teyssandier and R. W. Tucker, Gravity, Gauges and Clocks, Class. Quant. Grav. 13 (1996) 145–152.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  61. R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev. 101 (1956) 1597–1607.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. S.A. Werner, J.-L. Staudenmann, and R. Colella, Effect of Earth’s rotation on the quantum mechanical phase of the neutron, Phys. Rev. Lett. 42 (1979) 1103–1106.

    Article  ADS  Google Scholar 

  63. H. Weyl, Zur Infinitesimalgeometrie: Einordnung der projektiven und konformen Auffassung, Nachr. Königl. Gesellschaft Wiss. Göttingen, Math.-Phys. Klasse, pp. 99–112 (1921); also in K. Chandrasekharan (ed.), Hermann Weyl, Gesammelte Abhandlungen Vol.II, 195–207 (Springer, Berlin, 1968).

    Google Scholar 

  64. H. Weyl, Raum, Zeit, Materie, Vorlesungen über Allgemeine Relativitätstheorie, reprint of the 5th ed. of 1923 (Wissenschaftliche Buchges., Darmstadt, 1961). Engl. translation of the 4th ed.: Space–Time–Matter (Dover Publ., New York, 1952).

    Google Scholar 

  65. F. Wilczek, Two applications of axion electrodynamics, Phys. Rev. Lett. 58 (1987) 1799–1802.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Hehl, F., Obukhov, Y. (2006). Spacetime Metric from Local and Linear Electrodynamics: A New Axiomatic Scheme. In: Ehlers, J., Lämmerzahl, C. (eds) Special Relativity. Lecture Notes in Physics, vol 702. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34523-X_7

Download citation

Publish with us

Policies and ethics