Skip to main content

The Challenge of Practice: Einstein, Technological Development and Conceptual Innovation

  • Chapter
Special Relativity

Part of the book series: Lecture Notes in Physics ((LNP,volume 702))

Abstract

The pioneers of the scientific revolution claimed that the developing system of knowledge they envisioned would be distinguished by its practical usefulness. Galileo Galilei, Francis Bacon, and René Descartes agreed that the newly conceived endeavor of unveiling nature’s secrets by means of uncovering its lawful regularities would engender practical progress, too. The novel and revolutionary idea was that knowledge of the causes and the laws of nature would pave the way toward technological innovation. As Bacon claimed, inventions bring about supreme benefit to humankind, and this aim is best served by investigating the processes underlying the operations of nature. Knowledge about nature’s workings makes it possible to take advantage of its forces [1, I.§129]. In the same vein, Descartes conceived of technology as an application of this novel type of knowledge. The speculative and superficial claims that had made up the erudition of the past had remained barren and had failed to bear practical fruit. The principles of Descartes’ own approach, by contrast, promised to afford

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bacon: Neues Organon I-II (1620); Latin–German translation and edition by W. Krohn (Meiner, Hamburg 1999).

    Google Scholar 

  2. R. Descartes: Discours de la méthode (1637); German translation and edition by L. Gäbe (Meiner, Hamburg 1960).

    Google Scholar 

  3. I. Hacking: Representing and Intervening. Introductory Topics in the Philosophy of Natural Science (Cambridge University Press, Cambridge 1983).

    Google Scholar 

  4. V. Bush: Science The Endless Frontier. A Report to the President (United States Government Printing Office, Washington D.C. 1945); online: http://www.nsf.gov/od/lpa/nsf50/vbush1945.htm

    Google Scholar 

  5. R. Hohlfeld: Strategien gegen Krebs – Die Planung der Krebsforschung, in W. van den Daele, W. Krohn & P. Weingart (eds.): Geplante Forschung. Vergleichende Studien ber den Einfluβ politischer Programme auf die Wissenschaftsentwicklung (Suhrkamp, Frankfurt 1979), p. 181.

    Google Scholar 

  6. P. Galison: Einstein’s Clocks, Poincaré’s Maps. Empires of Time (W.W. Norton, New York 2003).

    MATH  Google Scholar 

  7. N. Cartwright: Fundamentalism versus the Patchwork of Laws, in D. Papineau (ed.): The Philosophy of Science (Oxford University Press, Oxford 1996), p. 314.

    Google Scholar 

  8. T. Wilholt: Design Rules: Industrial Research and Epistemic Merit, forthcoming (2005).

    Google Scholar 

  9. J. Ziman: The Continuing Need for Disinterested Research, Science and Engineering Ethics 8, 397 (2002).

    Article  Google Scholar 

  10. S.S. Schweber: Physics, Community and the Crisis in Physical Theory, Physics Today, November 1993, p. 34.

    Google Scholar 

  11. A. Einstein: Zur Elektrodynamik bewegter Körper, Ann. Physik 17, 891 (1905); reprinted in [29, pp. 26–50].

    Article  MATH  ADS  Google Scholar 

  12. H.A. Lorentz: Simplified Theory of Electrical and Optical Phenomena in Moving Systems, in [16], p. 255, reprinted from 1899.

    Google Scholar 

  13. P. Drude: The Theory of Optics (Dover, New York 1959), translated from Lehrbuch der Optik (S. Hirzel, Leipzig 1900).

    Google Scholar 

  14. H. Poincaré: La mécanique nouvelle, in É. Guillaume (ed.): La Mécanique Nouvelle (Gauthier-Villars, Paris 1927), 1–17. Reprint from (1909).

    Google Scholar 

  15. R. McCormmach: Einstein, Lorentz, and the Electron Theory, Historical Studies in the Physical Sciences 2, 41 (1970).

    Google Scholar 

  16. K. Schaffner: Nineteenth–Century Aether Theories (Pergamon Press, Oxford 1972).

    Google Scholar 

  17. M. Carrier: Shifting Symbolic Structures and Changing Theories: On the Non- Translatability and Empirical Comparability of Incommensurable Theories, in ,M. Ferrari & I. Stamatescu (eds.): Symbol and Physical Knowledge. On the Conceptual Structure of Physics (Springer, Berlin 2001), pp. 125–148.

    Google Scholar 

  18. M. Carrier: Semantic Incommensurability and Empirical Comparability: The Case of Lorentz and Einstein, Philosophia Scientiae 8, 73 (2004).

    Google Scholar 

  19. H.A. Lorentz: Electromagnetic phenomena in a system moving with any velocity less than that of light, Proc. Acad. Science Amsterdam IV, 669 (1904); reprinted in [29].

    Google Scholar 

  20. K. Schaffner: Einstein versus Lorentz: Research Programmes and the Logic of Comparative Theory Evaluation, The British Journal for the Philosophy of Science 25, 45 (1974).

    Article  Google Scholar 

  21. H. Poincaré: La mesure du temps, Revue de métaphysique et de morale 6, 1 (1898).

    MATH  Google Scholar 

  22. H. Poincaré: La théorie de Lorentz et le principe de réaction, in Œuvres de Henri Poincaré IX (Gauthier-Villars, Paris 1954), pp. 464–488.

    Google Scholar 

  23. H. Poincaré: La Valeur de la Science (Flammarion, Paris 1905).

    Google Scholar 

  24. A.I. Miller: Albert Einstein’s Special Theory of Relativity. Emergence (1905) and Early Interpretation (1905–1911) (Addison–Wesley, Reading Mass. 1981).

    Google Scholar 

  25. H. Reichenbach: The Philosophy of Space and Time (Dover Publications, New York 1958); translated from Philosophie der Raum–Zeit–Lehre (W. de Gruyter, Berlin 1928).

    MATH  Google Scholar 

  26. J. Messerli: Gleichmässig, pünktlich, schnell. Zeiteinteilung und Zeitgebrauch in der Schweiz im 19. Jahrhundert (Chronos, Zürich 1995).

    Google Scholar 

  27. M. Carrier: The Completeness of Scientific Theories. On the Derivation of Empirical Indicators within a Theoretical Framework: The Case of Physical Geometry, Western Ontario Series in the Philosophy of Science 53 (Kluwer Academic Publishers, Dordrecht 1994).

    Google Scholar 

  28. W. Heisenberg: Die Physikalische Prinzipien der Quantentheorie (B.I. Wissenschaftsverlag, Mannheim 1958); English translation: The Physical Principles of the Quantum Theory (Dover Publications, New York 1949).

    Google Scholar 

  29. H.A. Lorentz, A. Einstein & H. Minkowski: Das Relativitätsprinzip. Eine Sammlung von Abhandlungen (Wissenschaftliche Buchgesellschaft, Darmstadt 1923).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Carrier, M. (2006). The Challenge of Practice: Einstein, Technological Development and Conceptual Innovation. In: Ehlers, J., Lämmerzahl, C. (eds) Special Relativity. Lecture Notes in Physics, vol 702. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34523-X_2

Download citation

Publish with us

Policies and ethics