Skip to main content

Molecular and functional diversity of the TRPC family of ion channels. TRPC channels and their role in ROCE/SOCE

  • Conference paper
  • 510 Accesses

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39:497–511

    Article  PubMed  CAS  Google Scholar 

  • Babnigg G, Bowersox SR, Villereal ML (1997) Role of pp60c-src in the regulation of calcium via store-operated calcium channles. J Biol Chem 272:29434–29437

    Article  PubMed  CAS  Google Scholar 

  • Bezzerides V, Ramsey S, Greka A, Clapham DE (2004) Rapid translocation and insertion of TRPC5 channels. Nature Cell Biol 6:709–720

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L, Zhu X, Jiang M, Boulay G, Peyton M, Vannier B, Brown D, Platano D, Sadeghi H, Stefani E, Birnbaumer M (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci USA 93:15195–15202

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L, Yildirim E, Abramowitz J (2003) A comparison of the genes coding for canonical TRP channels and their M, V and D relatives. Cell Calcium 33:419–432

    Article  PubMed  CAS  Google Scholar 

  • Bloomquist BT, Shortridge RD, Schneuwly S, Perdew M, Montell C, Steller H, Rubin G, Pak WL (1988) Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54:723–733

    Article  PubMed  CAS  Google Scholar 

  • Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L (1999) Modulation of Ca2+ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proc Natl Acad Sci USA 96:14955–14960

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    Article  PubMed  CAS  Google Scholar 

  • Cayouette S, Lussier MP, Mathieu EL, Bousquet SM, Boulay G (2004) Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein-coupled receptor activation. J Biol Chem 279:7241–7246

    Article  PubMed  CAS  Google Scholar 

  • Chevesich J, Kreuz AJ, Montell C (1997) Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron 18:95–105

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin S-Y, Vollrath MA, Amalfitano A, Cheung EL-M, Derfler1 BH, Duggan A, Geleoc GSG, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 342:723–730

    Article  CAS  Google Scholar 

  • Devary O, Heichal O, Blumenfeld A, Cassel D, Suss E, Barash S, Rubinstein CT, Minke B, Selinger Z (1987) Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proc Natl Acad Sci USA 84:6939–6943

    Article  PubMed  CAS  Google Scholar 

  • Dietrich A, Mederos y Schnitzler M, Emmel J, Kalwa H, Hofmann T, Gudermann T (2003) N-Linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem 278:47842–47852

    Article  PubMed  CAS  Google Scholar 

  • Dulac C, Torello AT (2003) Molecular detection of pheromone signals in mammals: from genes to behavior. Nature Rev Neurosci 4:551–562

    Article  CAS  Google Scholar 

  • Fleig A, Penner R (2004) The TRP Mion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25:633–639

    Article  PubMed  CAS  Google Scholar 

  • Freichel M, Vennekens R, Olausson J, Hoffmann M, Muller C, Stolz S, Scheunemann J, Weissgerber P, Flockerzi V (2004) Functional role of TRPC proteins in vivo: lessons from TRPC4-deficient mouse models. Biochem Biophys Res Commun 322:1352–1358

    Article  PubMed  CAS  Google Scholar 

  • Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278:21493–21501

    Article  PubMed  CAS  Google Scholar 

  • Gutkind JS, Robbins KC (1992) Activation of transforming G-protein coupled receptors induces rapid tyrosine phosphorylation of cellular proteins including p125FAK and p130src substrate. Biochem Biophys Res Commun 188:155–161

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC, Minke B (1992) The trp gene is essential for a light activated Ca2+-channel in Drosophila photoreceptor cells. Neuron 8:643–651

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC, Minke B (1993) Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for Phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 9:371–376

    Article  Google Scholar 

  • Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mitsutani A, Mikoshiba K (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894

    Article  PubMed  CAS  Google Scholar 

  • Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH, Bindels RJ (1999) Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem 274:8375–8378

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Obukhov AG, Scharfer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacyglycerol. Nature 397:259–263

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99:7461–7466

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Penner R (1991) Depletion of Intracellular Calcium Stores Activates a Calcium Current in Mast Cells. Nature 355, 353–356

    Article  Google Scholar 

  • Hotta Y, Benzer S (1970) Genetic dissectionof the Drosophilanervous system by means of mosaics. Proc Natl Acad Sci USA 67:1156–1163

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Schilling WP (1995) Receptor-mediated activation of recombinant trpl expressed in Sf9 insect cells. Biochem J 305:605–611

    PubMed  CAS  Google Scholar 

  • Hu Y, Vaca L, Zhu X, Birnbaumer L, Kunze D, Schilling WP (1994) Appearance of a novel Ca2+-influx pathway in Sf9 insect cells following expression of the transient receptor potential-like (trpl) protein of Drosophila. Biochem Biophys Res Commun 132:346–354

    Google Scholar 

  • Huber A, Sander P, Gobert A, Baehner M, Hermann R, Paulsen R (1996) The transient receptor potential protein (Trp), a putative store-operated Ca2+ channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with Norp A, Ina C, InaD. EMBO J 15:7036–7045

    PubMed  CAS  Google Scholar 

  • Hunter JJ, Shao J, Smutko JS, Dussault BJ, Nagle DL, Woolf EA, Holmgren LM, Moore KJ, Shyjan AW (1998) Chromosomal localization and genomic characterization of the melastatin gene (Mlsn 1). Genomics 54:116–123

    Article  PubMed  CAS  Google Scholar 

  • Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) Thetransient receptor potential protein homologue TRP6 is the essential component of vascular α1-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res 88:325–332

    PubMed  CAS  Google Scholar 

  • Igishi T, Gutkind JS (1998) Tyrosine kinases of the src family participate in signaling to MAP kinase from both Gq-and Gi-coupled receptors. Biochem Biophys Res Commun 244:5–10

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Muehle A, Schaefer M, Strotmann R, Schultz G, Plant TD (2003) Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem 278:3562–3571

    Article  PubMed  CAS  Google Scholar 

  • Jungnickel MS, Marrero H, Birnbaumer L, Lemos JR, Florman HM (2001) Trp2 regulates Ca2+ entry into sperm triggered by egg ZP3. Nature Cell Biol 3:499–502

    Article  PubMed  CAS  Google Scholar 

  • Kanzaki M, Zhang Y-Q, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nature Cell Biol 1:165–170

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki BT, Liao Y, Birnbaumer L (2006) Molecular basis for Src dependence in the activation of TRPC3. Evidence for a heterogeneous makeup of ROCE and SOCE channels. Proc Natl Acad Sci USA 103:335–340

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Saffen D (2005) Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centered on TRPC6 channels. J Biol Chem 280:32035–32047

    Article  PubMed  CAS  Google Scholar 

  • Kwan CY, Takemura H, Obie JF, Thastrup O, Putney JW Jr (1990) Effects of MeCh, Thapsigargin, and La3+ on plasmalemmal and intracellular Ca2+ transport in lacrimal acinar cells. Am J Physiol 258:C1006–1015

    PubMed  CAS  Google Scholar 

  • Kwan YK, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50: 277–289

    Article  PubMed  CAS  Google Scholar 

  • Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    Article  PubMed  CAS  Google Scholar 

  • Lee K-M, Villereal ML (1996) Tyrosine phosphorylation and activation of pp60c-src and pp125FAK in bradikynin stimulated fibroblasts. Am J Physiol 270:C1430–C1437

    PubMed  CAS  Google Scholar 

  • Lee K-M, Toscas K, Villereal ML (1993) Inhibition of bradikynin and thapsigargin-induced calcium entry tyrosine kinase inhibitors. J Biol Chem 268:9945–9948

    PubMed  CAS  Google Scholar 

  • Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, Yuan XB (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434:894–898

    Article  PubMed  CAS  Google Scholar 

  • Lievremont JP, Bird GS, Putney JW Jr (2004) Canonical transient receptor potential TRPC7 can function as both a receptor and store-operated channel in HEK-293 cells. Am J Physiol Cell Physiol 287:C1709–C1716

    Article  PubMed  CAS  Google Scholar 

  • Liman ER, Corey DP, Dulac C (1999) TRP2, a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci USA 96:5791–5796

    Article  PubMed  CAS  Google Scholar 

  • Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, Groschner K (2000) Coassembly of Trp1 and Trp3 proteins generates diacylglycerol-and Ca2+-sensitive cation channels. J Biol Chem 275:27799–277805

    PubMed  CAS  Google Scholar 

  • Liou L, Kim ML, Jones JT, Myers JW, Ferrel Jr JE, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Wang W, Singh BB, Lockwich T, Jadlowiec J, O’Connell B, Wellner R, Zhu MX, Ambudkar IS (2000) Trp1, a candidate protein for the store-operated Ca2+ influx mechanism in salivary gland cells. J Biol Chem 275:3403–3411

    Article  PubMed  CAS  Google Scholar 

  • Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutantmice: mechanismof pheromone transduction. Neuron 40:551–561

    Article  PubMed  CAS  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  • Montell (2001) “Physiology, Phylogeny and Functions of the TRP Superfamily of Cation Channels.” Science’s SKTE http://skte.sciencemag.org/cgi/content/full/OC_sigtrans;2001/90/re1

    Google Scholar 

  • Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Caterina MJ, Clapham DE, Heller S, Julius D, Scharenberg AM, Schultz G, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231

    Article  PubMed  CAS  Google Scholar 

  • Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Flieg A (2001) LTRPC7 is a MgATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse TRP homologue TRP7 that forms a background and receptor-activated Ca2+ permeable cation channel. J Biol Chem 274:27359–27370

    Article  PubMed  CAS  Google Scholar 

  • Pak WL, Grossfield J, Arnold K (1970) Mutant of the visual pathway of Drosophila melanogaster. Nature 227:518–520

    Article  PubMed  CAS  Google Scholar 

  • Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T (2005) Illumination of the melanopsin signaling pathway. Science 307:600–604

    Article  PubMed  CAS  Google Scholar 

  • Patterson RL, van Rossum DB, Gill DL (1999) Store operated Ca2+ entry: evidence for a secretion-like coupling model. Cell 98:487–499

    Article  PubMed  CAS  Google Scholar 

  • Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, Hediger MA (1999) Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 274:22739–22746

    Article  PubMed  CAS  Google Scholar 

  • Perez CA, Huang L, Rong M, Kozak, JA, Preuss AK, Zhang H, Max M, Margolskee RF (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5:1169–1176

    Article  PubMed  CAS  Google Scholar 

  • Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schimitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599

    Article  PubMed  CAS  Google Scholar 

  • Philipp S, Cavalie A, Freichel M, Wissenbach U, Zimmer S, Trost C, Marquart A, Murakami M, Flockerzi V (1996) A mammalian capacitative calcium entry channel homologous to Drosophila TRP, TRPL. EMBO J 25:6166–6171

    Google Scholar 

  • Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, Murakami M, Cavalie A, Flockerzi V (1998) A novel capacitative calcium entry channel expressed in excitable cells. EMBO J 77:4274–4282

    Article  Google Scholar 

  • Phillips AM, Bull A, Kelly LE (1992) Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron 8:631–642

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr (1990) Capacitative calcium entry revisited. Cell Calcium 11:611–624

    Article  PubMed  CAS  Google Scholar 

  • Qiu X, Kumbalasiri T, Carlson SM, Wong KY, Krishna V, Provencio I, Berson DM (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature 433:745–749

    Article  PubMed  CAS  Google Scholar 

  • Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002a) mRNA distribution analysis of human TRPC family in the CNS and peripheral tissues. Mol Brain Res 109:v95–104

    Article  Google Scholar 

  • Riccio A, Mattei C, Kelsell RE, Medhurst AD, Calver AR, Randall AD, Davis JD, Benham CD, Pangalos MN (2002b) Cloning and Functional Expression of Human Short TRP7, a Candidate Protein for Store-operated Ca2+ Influx. J Biol Chem 277:12302–12309

    Article  PubMed  CAS  Google Scholar 

  • Rios E, Pizarro G (1991) Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev 71:849–908

    PubMed  CAS  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Vilicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Sage SO (2001) Activation of store-mediated calcium entry by secretion-like coupling between the inositol 1,4,5-trisphosphate receptor type II and human transient receptor potential (hTrp1) channels in human platelets. Biochem J 356:191–198

    Article  PubMed  CAS  Google Scholar 

  • Rosker C, Graziani A, Lukas M, Eder P, Zhu MX, Romanin C, Groschner K (2004) Ca2+ signaling by TRPC3 involves Na+ entry and local coupling to the Na+/Ca2+ exchanger. J Biol Chem 279:13696–13704

    Article  PubMed  CAS  Google Scholar 

  • Schaefer M, Plant TD, Stresow N, Albrecht N, Schultz G (2002) Functional differences between TRPC4 splice variants. J Biol Chem 277:3752–3759

    Article  PubMed  CAS  Google Scholar 

  • Schindl R, Kahr H, Graz I, Groschner K, Romanin C (2002) Store depletion-activated CaT1 currents in rat basophilic leukemia mast cells are inhibited by 2-aminoethoxydiphenyl borate. Evidence for a regulatory component that controls activation of both CaT1 and CRAC (Ca2+ release-activated Ca2+ channel) channels. J Biol Chem 277:26950–26958

    Article  PubMed  CAS  Google Scholar 

  • Selinger Z, Minke B (1988) Inositol lipid cascade of vision studied in mutant flies. Cold Spring Harbor Symp Quant Biol 53:333–341

    PubMed  CAS  Google Scholar 

  • Shieh B-H, Zhu M-Y (1995) Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron 16:991–998

    Article  Google Scholar 

  • Sinkins WG, Vaca L, Hu Y, Kunze DL, Schilling WP (1996) The COOH-terminal domain of Drosophila TRP channels confers Thapsigargin sensitivity. J Biol Chem 271:2955–2960

    Article  PubMed  CAS  Google Scholar 

  • Soboloff J, Spassova M, Xu W, He LP, Cuesta1 N, Gill DL (2005) Role of endogenous TRPC6 channels in Ca2+ signal generation in A7r5 smooth muscle cells. J Biol Chem 280:39786–39794

    Article  PubMed  CAS  Google Scholar 

  • Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden HC, Andersson DA, Hwang SW, McIntyre, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  PubMed  CAS  Google Scholar 

  • Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRPC2. Science 295:1493–1500

    Article  PubMed  CAS  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, anon-selective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  PubMed  CAS  Google Scholar 

  • Struebing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019

    Article  CAS  Google Scholar 

  • Sun M, Goldin E, Stahl S, Falardeau JL, Kennedy JC, Acierno JS, Bove C, Kaneski CR, Nagel J, Bromley MC, Colman M, Schiffmann R Slaugenhaupt SA (2000) Mucolipidosis type 4 is caused by mutations in a gene encoding a novel transient receptor potential channel. Human Mol Genet 9:2471–2478

    Article  CAS  Google Scholar 

  • Tang Y, Tang J, Chen Z, Trost C, Flockerzi V, Li M, Rameshi V, Zhu MX (2000) Association of mammalian Trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J Biol Chem 275:37559–37564

    Article  PubMed  CAS  Google Scholar 

  • Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+ ATPase. Proc Natl Acad Sci USA 87:2466–2470

    Article  PubMed  CAS  Google Scholar 

  • Trebak M, Hempel N, Wedel BJ, Smyth JT, Bird GS, Putney JW Jr. (2005) Negative regulation of TRPC3 channels by protein kinase C-mediated phosphorylation of serine 712. Mol Pharmacol 67:558–563

    Article  PubMed  CAS  Google Scholar 

  • Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang M, Zhu X, Birnbaumer L (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capactitative Ca2+ entry channel. Proc Natl Acad Sci USA 96:2060–2064

    Article  PubMed  CAS  Google Scholar 

  • Vazquez G, Wedel BJ, Trebak M, Bird GS, Putney JW Jr. (2003) Expression level of the canonical transient receptor potential 3 (TRPC3) channel determines its mechanism of activation. J Biol Chem 278:21649–21654

    Article  PubMed  CAS  Google Scholar 

  • Vazquez G, Wedel BJ, Kawasaki BT, St. John Bird G, Putney J (2004) Obligatory role for src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 279:40521–40528

    Article  PubMed  CAS  Google Scholar 

  • Veldhuisen B, Spruit L, Dauwerse HG, Breuning MH, Peters DJM (1999) Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). Eur J Human Genet 7:860–872

    Article  CAS  Google Scholar 

  • Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278:29031–29040

    Article  PubMed  CAS  Google Scholar 

  • Wang GX, Poo MM (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434:898–904

    Article  PubMed  CAS  Google Scholar 

  • Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA 92:9652–9656

    Article  PubMed  CAS  Google Scholar 

  • Xu X-ZS, Choudhury A, Li X, Montell C (1998) Coordination of an array of signaling proteins through homo-and heteromeric interactions between PDZ domains and target proteins. J Cell Biol 142:545–555

    Article  PubMed  CAS  Google Scholar 

  • Yildirim E, Kawasaki BT, Birnbaumer L (2005) Molecular cloning of TRPC3a, an N-terminally extended, store-operated variant of the human C3 transient receptor potential channel. Proc Natl Acad Sci USA 102:3307–3311

    Article  PubMed  CAS  Google Scholar 

  • Yue L, Peng JB, Hediger MA, Clapham DE (2001) CaT1 manifests the pore properties of the calcium release activated calcium channel. Nature 410:705–709

    Article  PubMed  CAS  Google Scholar 

  • Zagranichnaya TK, Wu X, Villereal ML (2005) Endogenous TRPC1, TRPC3, and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J Biol Chem 280:29559–29569

    Article  PubMed  CAS  Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Jiang M, Peyton MJ, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ influx. Cell 85:661–671

    Article  PubMed  CAS  Google Scholar 

  • Zufall F, Ukhanov K, Lucas P, Leinders-Zufall T (2005) TRPC2: from gene to behavior. Pfluegers Arch Eur J Physiol 451:61–71

    Article  CAS  Google Scholar 

  • Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci USA 90:6295–6299

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Birnbaumer, L., Yildirim, E., Liao, Y., Abramowitz, J. (2006). Molecular and functional diversity of the TRPC family of ion channels. TRPC channels and their role in ROCE/SOCE. In: Conn, M., Kordon, C., Christen, Y. (eds) Insights into Receptor Function and New Drug Development Targets. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34447-0_1

Download citation

Publish with us

Policies and ethics