Skip to main content

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 84))

10.3 Concluding Remarks

In this chapter the fundamental physical processes underlying the interaction of relativistically intense EM radiation with a preformed collisionless plasma have been discussed, introducing the most appropriate relativistic models which are currently used in the theoretical research: the kinetic approach, the multi-fluid model, and the electron-fluid model in a fixed-ion background. The role of relativistic nonlinearities for focused radiation intensities above 2 ≈ 1018 Wµm2/cm2 has been emphasized, reviewing several physical processes like relativistic laser pulse focusing, compression and splitting, harmonic generation, electron and ion acceleration, quasi-static magnetic field generation, X-ray production, laser-induced nuclear reactions, electron-positron production. All these issues demonstrate that the successful development of more and more intense lasers in the last decade has opened up several new fields of fundamental and applied science, which may results in applications unpredictable ten or twenty years ago.

The fundamental aspects of the relativistic dynamic of an electron in the relativistically intense laser pulse have been discussed, starting from the socalled “figure-of-8” trajectory. It is to be emphasized that in such interaction regimes, an appreciable elongation of the electron excursion in the direction of the pulse propagation develops, which may become of the same order as that in the transverse direction. In addition, in an increasingly strong field, the electron parallel momentum scales as a 2, while the perpendicular component scales as a. Therefore, in the ultra-relativistic regime the longitudinal electron dynamics can become more important than the transverse one. An important consequence is that a short and intense laser pulse, acting mainly on electrons, is able to create strong charge separations, which are at the basis of the effective charged particle acceleration, both of electrons and ions, and of the formation of relativistic electromagnetic solitons (RES). RES and laser-based ion-acceleration will be discussed in a forthcoming chapter.

The ultra-strong laser-pulse interaction in such extreme regimes can be considered as one of the most attractive fields of modern theoretical and experimental research and is destined to produce very interesting applications in the near future.3

During the editorial process of this volume, two review articles on relevant subjects have been published, which are worth to be referenced [78, 79].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. Eberly, P. Maine, D. Strickland et al.: Laser Focus 23, 84 (1987)

    Google Scholar 

  2. P. Maine, D. Strickland, P. Bado et al.: IEEE Journal of Quantum Electronics QE-24, 398 (1988)

    Article  ADS  Google Scholar 

  3. M.D. Perry and G. Mourou: Science 64, 917 (1994)

    Article  ADS  Google Scholar 

  4. G.A. Mourou, C.P.J. Barty, M.D. Perry: Physics Today 51, 22 (1998)

    Article  ADS  Google Scholar 

  5. J.D. Lindl, B.A. Hammel, B. Grant Logan et al.: Plasma Phys. Contr. Fus. 46, B135 (2004)

    Article  Google Scholar 

  6. C. Cavailler, N. Fleurot, T. Lonjaret, J.-M. Di-Nicola: Plasma Phys. Contr. Fus. 45, A217 (2003)

    Article  Google Scholar 

  7. A.V. Gaponov and M.A. Miller: Sov. Phys. JETP 7, 168 (1958)

    Google Scholar 

  8. W.L. Kruer: The Physics of Laser-Plasma Interaction (Addison-Wesley, New York 1988)

    Google Scholar 

  9. P. Corkum: Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  10. M. Lontano, G. Lampis, A. Kim, A.M. Sergeev: Physica Scripta T63, 262(1996)

    Article  Google Scholar 

  11. A.M. Sergeev, M. Lontano, A.V. Kim et al.: Laser Part. Beams 17, 129 (1998)

    Article  ADS  Google Scholar 

  12. C.E. Max, J. Arons, A.B. Langdon: Phys. Rev. Lett. 33, 2091 (1974)

    Article  Google Scholar 

  13. W.B. Mori, C. Joshi, J.M. Dawson et al.: Phys. Rev. Lett. 60, 1298 (1988)

    Article  ADS  Google Scholar 

  14. A. Borisov, A.V. Borovskiy, O.B. Shiryaev et al.: Phys. Rev. A 45, 5830 (1992)

    Article  ADS  Google Scholar 

  15. S.V. Bulanov, F. Califano, G.I. Dudnikova et al.: Relativistic Interaction of laser pulses with Plasmas. In Reviews of Plasma Physics, edited by V.D. Shafranov (Kluwer Academic/Consultants Bureau New York 2001), vol. 22, pp 227–335

    Google Scholar 

  16. G. Zeng, B. Shen, W. Yu, Z. Xu: Phys. Plasmas 3, 4220 (1996)

    Article  ADS  Google Scholar 

  17. S.V. Bulanov, M. Lontano, T.Zh. Esirkepov et al.: Phys. Rev. Lett. 76, 3562(1996)

    Article  ADS  Google Scholar 

  18. G.A. Askar’yan, S.V. Bulanov, G.I. Dudnikova et al.: Plasma Phys. Contr. Fus. 39, A137 (1997)

    Article  ADS  Google Scholar 

  19. G.A. Askar’yan, S.V. Bulanov, F. Califano et al.: Plasma Phys. Contr. Fus. 39, B261 (1997)

    Article  ADS  Google Scholar 

  20. D. Farina, M. Lontano, I.G. Murusidze, S.V. Mikeladze: Phys. Rev. E 63, 056409 (2001)

    Article  ADS  Google Scholar 

  21. T. Tajima, J.M. Dawson: Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  22. Th. Katsouleas: Nature 431, 515 (2004)

    Article  ADS  Google Scholar 

  23. S.P.D. Mangles, C.D. Murphy, Z. Najimudin et al.: Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  24. C.G.R. Geddes, Cs. Toth, J. van Tilborg et al.: Nature 431, 538 (2004)

    Article  ADS  Google Scholar 

  25. J. Faure, Y. Glinec, A. Pukhov et al.: Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

  26. S.V. Bulanov, I.N. Inovenkov, V.I. Kirsanov et al.: Phys. Fluids B 4, 1935(1992)

    Article  ADS  Google Scholar 

  27. S.V. Bulanov, I.N. Inovenkov, V.I. Kirsanov et al.: Physica Scripta 47, 209(1993)

    Article  ADS  Google Scholar 

  28. S.V. Bulanov, T.Zh. Esirkepov, N.N. Naumova et al.: Phys. Rev. Lett. 82,3440 (1999)

    Article  ADS  Google Scholar 

  29. Y. Sentoku, T.Zh. Esirkepov, K. Mima et al.: Phys. Rev. Lett. 83, 3434 (1999)

    Article  ADS  Google Scholar 

  30. N.M. Naumova, S.V. Bulanov, T.Zh. Esirkepov et al.: Phys. Rev. Lett. 87, 185004 (2001)

    Article  ADS  Google Scholar 

  31. T. Esirkepov, K. Nishihara, S.V. Bulanov, F. Pegoraro: Phys. Rev. Lett. 89, 275002 (2002)

    Article  ADS  Google Scholar 

  32. M. Lontano, S.V. Bulanov, F. Califano et al.: Relativistic Electromagnetic Solitons produced by Ultrastrong Laser Pulses in Plasmas. In Science of Superstrong Field Interactions., edited by K. Nakajima and M. Deguchi, AIP Conference Proceedings (American Institute of Physics New York 2002), 634, pp 87–98

    Google Scholar 

  33. E.L. Clark, K. Krushelnick, J.R. Davies et al.: Phys. Rev. Lett. 84, 670 (2000)

    Article  ADS  Google Scholar 

  34. R.A. Snavely, M.H. Key, S.P. Hatchett et al.: Phys. Rev. Lett. 85, 2945 (2000)

    Article  ADS  Google Scholar 

  35. S. Fritzler, V. Malka, G. Grillon et al.: Appl. Phys. Lett. 83, 3039 (2003)

    Article  ADS  Google Scholar 

  36. T.E. Cowan, J. Fuchs, H. Ruhl et al.: Phys. Rev. Lett. 92, 204801 (2004)

    Article  ADS  Google Scholar 

  37. T.E. Cowan, A.W. Hunt, T.W. Phillips et al.: Phys. Rev. Lett. 84, 903 (2000)

    Article  ADS  Google Scholar 

  38. M.A. Stoyer, T.C. Sangster, E.A. Henry et al.: Rev. Sci. Instr. 72, 767 (2001)

    Article  ADS  Google Scholar 

  39. S. Fritzler, Z. Najimudin, V. Malka et al.: Rev. Sci. Instr. 89, 165004 (2002)

    Google Scholar 

  40. M. Lontano and I.G. Murusidze: Optics Express 11, 248 (2003)

    Article  ADS  Google Scholar 

  41. C.N. Danson, P.A. Brummitt, R.J. Clarke et al.: Nucl. Fus. 44, S239 (2004)

    Article  ADS  Google Scholar 

  42. T. Tajima and G. Mourou: Superstrong Field Science. In Superstrong Field in Plasmas, edited by M. Lontano, G. Mourou, O. Svelto, T. Tajima, AIP Conference Proceedings (American Institute of Physics New York 2002), 611, pp 423–436

    Google Scholar 

  43. E.P. Liang, S.C. Wilks, M. Tabak: Phys. Rev. Lett. 81, 4887 (1998)

    Article  ADS  Google Scholar 

  44. P. Chen, T. Tajima: Phys. Rev. Lett. 83, 256 (1999)

    Article  ADS  Google Scholar 

  45. S.V. Bulanov, T. Esirkepov, T. Tajima: Phys. Rev. Lett. 91, 085001 (2003)

    Article  ADS  Google Scholar 

  46. J. Meyer-ter-Vehn, A. Pukhov, Zh.-M. Sheng: Relativistic Laser Plasma Interaction. In Atoms, Solids, and Plasmas in Super-Intense Laser Fields, edited by D. Batani, Ch. Joachain, S. Martellucci, A.N. Chester (Kluwer Academic/ Pleanum Publishers, New York 2001), pp 167–192

    Google Scholar 

  47. L.D. Landau and E.M. Lifshitz: The Classical Theory of Fields, 4th edn (Pergamon Press, Oxford 1980)

    MATH  Google Scholar 

  48. J.D. Jackson: Classical Electrodynamics, 3rd edn (John Wiley and Sons, New York 1998)

    MATH  Google Scholar 

  49. O.L. Brill, B. Goodman: Am. J. Phys. 35, 832 (1967)

    Article  ADS  Google Scholar 

  50. D.I. Dzhavakhishvili, N.L. Tsintsadze: Sov. Phys. JETP 37, 666 (1973)

    ADS  Google Scholar 

  51. S. Weinberg: Gravitation and Cosmology (Wiley, New York 1972)

    Google Scholar 

  52. F.T. Gratton, G. Gnavi, R.M.O. Galvao, L. Gomberoff: Phys. Rev. E 55, 3381(1997)

    Article  ADS  Google Scholar 

  53. C. Cercignani, G.M. Kremer: The Relativistic Boltzmann Equation: Theory and Applications (Birkhauser, Basel 2002)

    MATH  Google Scholar 

  54. M. Lontano, S.V. Bulanov, J. Koga: Phys. Plasmas 8, 5113 (2001)

    Article  ADS  Google Scholar 

  55. V.I. Berezhiani, S.M. Mahajan, Z. Yoshida, M. Ohhashi: Phys. Rev. E 65, 047402 (2002)

    Article  ADS  Google Scholar 

  56. L. Gorbunov, P. Mora, T.M. Antonsen Jr.: Phys. Rev. Lett. 76, 2495 (1996)

    Article  ADS  Google Scholar 

  57. S.V. Bulanov, T.Zh. Esirkepov, M. Lontano et al.: Physica Scripta T63, 280(1996)

    Article  ADS  Google Scholar 

  58. L. Gorbunov, P. Mora, T.M. Antonsen Jr.: Phys. Plasmas 4, 4358 (1997)

    Article  ADS  Google Scholar 

  59. A.M. Pukhov, J. Meyer-ter-Vehn: Phys. Plasmas 5, 1880 (1998)

    Article  ADS  Google Scholar 

  60. Z.M. Sheng, J. Meyer-ter-Vehn, A.M. Pukhov: Phys. Plasmas 5, 3764 (1998)

    Article  ADS  Google Scholar 

  61. L. Gorbunov, R.R. Ramazashvili: J. Exp. Theor. Phys. 87, 461 (1999)

    Article  ADS  Google Scholar 

  62. A.I. Akhiezer, R.V. Polovin: Sov. Phys. JETP 30, 915 (1956)

    MATH  MathSciNet  Google Scholar 

  63. A.I. Akhiezer, I.A. Akhiezer, R.V. Polovin et al.: Plasma Electrodynamics (Pergamon, Oxford 1975)

    Google Scholar 

  64. J.M. Dawson: Phys. Rev. 113, 383 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  65. S.V. Bulanov, V.I. Kirsanov, A.S. Sakharov: JETP Lett. 53, 565 (1990)

    ADS  Google Scholar 

  66. S. Dalla, M. Lontano: Phys. Lett. A 173, 456 (1993)

    Article  ADS  Google Scholar 

  67. T.P. Coffey: Phys. Fluids 14, 1402 (1971)

    Article  ADS  Google Scholar 

  68. T. Katsouleas, W.B. Mori: Phys. Rev. Lett. 61, 90 (1988)

    Article  ADS  Google Scholar 

  69. J.B. Rosenzweig: Phys. Rev. A 38, 3634 (1988)

    Article  ADS  Google Scholar 

  70. Z.M. Sheng, J. Meyer-ter-Vehn: Phys. Plasmas 54, 493 (1997)

    Article  ADS  Google Scholar 

  71. S.C. Wilks, W.L. Kruer: IEEE J. Quantum Electronics 33, 1954 (1997)

    Article  ADS  Google Scholar 

  72. F. Brunel: Phys. Rev. Lett. 59, 52 (1987)

    Article  ADS  Google Scholar 

  73. F. Brunel: Phys. Fluids 31, 2714 (1988)

    Article  ADS  Google Scholar 

  74. G. Bonnaud, P. Gibbon, J. Kindel, E. Williams: Laser Part. Beams 9, 339(1991)

    Article  ADS  Google Scholar 

  75. P. Gibbon, A. Bell: Phys. Rev. Lett. 68, 1535 (1992)

    Article  ADS  Google Scholar 

  76. S. Kato, B. Bhattacharyya, A. Nixhiguchi, K. Mima: Phys. Fluids B 5, 564(1993)

    Article  ADS  Google Scholar 

  77. W.L. Kruer: Phys. Fluids 28, 430 (1985)

    Article  ADS  Google Scholar 

  78. G.A. Mourou, T. Tajima, S.V. Bulanov: Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  79. M. Marklund, P.K. Shukla: Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lontano, M., Passoni, M. (2006). Ultraintense Electromagnetic Radiation in Plasmas. In: Progress in Ultrafast Intense Laser Science Volume I. Springer Series in Chemical Physics, vol 84. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34422-5_10

Download citation

Publish with us

Policies and ethics