Skip to main content

Reaktionsmechanismen

  • Chapter
  • 11k Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Bender R. (2003) Modellierung der Kopplung von chemischer Reaktion und turbulenter Mischung bei turbulenten Vormischflammen, Diss. Universität Stuttgart

    Google Scholar 

  • Bernstein J. S., Fein A., Choi J. B., Cool T. A., Sausa R. C., Howard S. L., Locke R. J., Miziolek A. W. (1993) Laser-based flame species profile Measuremets — a comparision with fleme model predictions, Combustion and Flame, Vol. 92, pp. 85–105

    Article  Google Scholar 

  • Blasco J. A., Fueyo N., Dopazo C., Ballester J. (1998) Modelling the temporal evolution of a reduced combustion chemical system with an artificial neural network, Combustion and Flame 113:38–52

    Article  Google Scholar 

  • Blasenbrey T. (2003) Modellierung der Kopplung von chemischer Reaktion und turbulenter Mischung bei turbulenten Vormischflammen, Diss. Uni Stuttgart

    Google Scholar 

  • Bowman C. T., Hanson R. K., Davidson D. F., Gardiner W. C., Lissianski jun. V., Smith G. P., Golden D. M., Frenklach M., Goldenberg M. (2005) GRI-Mech 3.0, http://www.me.berkeley.edu/gri-mech/

    Google Scholar 

  • Chen J.-Y., Blasco J. A., Fueyo N., Dopazo C (2000) An economical Strategy for Storage of chemical Kinetics: Fitting in situ adaptive tabulation with artificial neural networks, Proceedings of the Combustion Institute, 28:115–121

    Article  MATH  Google Scholar 

  • Chen Y. J. (1996) Evaluation of CH4/Nox Global mechanisms used for Modeling Lean Premixed Turbulent Combustion of Natural Gas, Thesis, University of California, Berkley

    Google Scholar 

  • Christo F. C., Masri A. R., Nebot E. M., Pope S. B. (1996a), An integrated pdf/neural network approach for simulating turbulent reaction systems, Proceedings of the Combustion Institute, 26:43–48

    Google Scholar 

  • Christo F. C., Masri A. R., Nebot E. M. (1996b) Artificial neuronal network implementation of chemistry with pdf simulation of H2/CO2 flames, Combustion and Flame, 106:406–427

    Article  Google Scholar 

  • Elliot L., Ingham D. B., Kyne A. G., Mera N. S., Pourkashanian M., Wilson C. W. (2002) The Optimisation of Reaction Rate Parameters for Chemical Kinetic Modeling using Genetic Algorithms IGTI/ASME GT2002-30092

    Google Scholar 

  • Elliot L., Ingham D. B., Kyne A. G., Mera N. S., Pourkashanian M., Wilson C. W. (2003) A novel Approach to the Optimisation of Reaction Rate Parameters for Methane Combustion using Multi-Objective Genetic Algorithms IGTI/ASME GT2003-38018

    Google Scholar 

  • Elliot L., Ingham D. B., Kyne A. G., Mera N. S., Pourkashanian M., Wilson C. W. (2004) A novel Approach to Mechanism Reduction Optimisation for Aviation Fuel/Air Mechanism using a Genetic Algorithm IGTI/ASME GT2004-53053

    Google Scholar 

  • Frenklach M., Wang H. (1997) A Detailed Kinetic Modeling of Aromatics Formation in Premixed Acetylene and Ethylene Flames, Combust. Flame 110, 173

    Article  Google Scholar 

  • Gardiner W. C., Olson D. B. (1980), Chemical Kinetics of High Temperature Combustion, Annual Review of Physical Chemistry, 31:377–399

    Article  Google Scholar 

  • Glassman I (1987), Combustion, 2nd Edition Academic Press Orlando FL

    Google Scholar 

  • Goldberg D. E. (1989) Genetic Algorithms in search, Optimisation and machine Learning, Addison-Wesley, Reading, MA

    Google Scholar 

  • Griffiths J. F., Barnard J. A. (1995) Flame and Combustion, 3. ed., Blackie Academic and Professional (London)

    Google Scholar 

  • Hirschfelder J. O. (1963) Some remarks on the theory of flame propagation. Proc Comb Inst 9:553

    Google Scholar 

  • Kapoor R., Lentati A., Menon S. (2001), Simulations of Methane-Air Flames using ISAT and ANN. AIAA Paper No. 2001-3847

    Google Scholar 

  • Kapoor R., Menon S. (2002) Computational Issues for Simulating Finite-Rate Kinetics in LES IGTI/ASME GT2002-30608

    Google Scholar 

  • Kramer M. A., Kee R. J., Rabitz H. (1982) CHEMSEN: A computer code for sensitivity analysis of elementary reaction models. SANDIA Report SAND82-8230, Sandia National Laboratories, Livermore CA

    Google Scholar 

  • Kyne A. G., Pattesrson P. M., Pourkashanian M., Williams A., Wilson C.J. (2001) Prediction of Premixed Laminar Flame Structure and Burning Velocity of Aviation Fuel-Air Mixtures, Proceedings of Turbo Expo 2001, ASME TURBO Expo 2001 June New Orleans USA

    Google Scholar 

  • Lam S. H., Goussis D. A. (1989) Understanding complex chemical kinetics with computational singular perturbation. Proc Comb Inst 22:931

    Google Scholar 

  • Liu K. (2004) Joint Velocity-Turbulence Frequency-Composition Probability Density Function (PDF) Calculations of Bluff Body Stabilized Flames, Thesis, Cornall University

    Google Scholar 

  • Lutz A. E., Kee R. J., Miller J. A. (1987) A Fortran program to predict homogeneous gas-phase chemical kinetics including sensitivity analysis. SANDIA Report SAND87-8248, Sandia National Laboratories, Livermore CA

    Google Scholar 

  • Maas U. (1993) Automatische Reduktion von Reaktionsmechanismen zur Simulation reaktiver Strömungen, Universität Stuttgart, Habil.schrift

    Google Scholar 

  • Maas U., Warnatz J. (1988) Ingnition processes in hydrogen-oxygen mixtures. Comb Flame 74:53

    Article  Google Scholar 

  • Maas U., Pope S. B. (1993a) Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Comb Flame 88:239

    Article  Google Scholar 

  • Maas U., Pope S. B. (1993b) Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Proc Comb Inst 24:103

    Google Scholar 

  • Mawid M. A., Park T. W., Sekar B., Arana C. (2005) Detailed Chemical Kinetic Modeling of JP-8/Jet-A ignition and Combustion, IGTI/ASME GT2005-68829

    Google Scholar 

  • Michalewiez Z. (1996) Genetic Algorithms/Data Structure/Evolution Programs, 3rd ed. Springer Berlin

    Google Scholar 

  • Nehse M., Warnatz J., Chevalier C. (1996) Kinetic modelling of the oxidation of large aliphatic hydrocarbons. Proc Comb Inst 26:77

    Google Scholar 

  • Nowak U., Warnatz J. (1998) Sensitivity analysis in aliphatic hydrocarbon combustion. In: Kuhl AL, Bowen JR, Leyer J-C, Borisov A (Ed) Dynamics of reactive systems, Part I. AIAA, New York, S 87

    Google Scholar 

  • Oijen J. A. (2002) Flamelet Generated Manifolds: Development and Application to Premixed Laminar Flames, TU Eindhoven, Habilschrift

    Google Scholar 

  • Polifke W., Geng W., Döbbeling K. D. (1998) Optimisation of Rate Coefficients for simplified reaction Mechanisms with genetic Algorithms, Combustion and Flame 113 pp. 119–135

    Article  Google Scholar 

  • Pope S. B. (1997) Computationally efficient implementation of combustion chemistry using In Situ adaptive tabulation. Combustion Theory Modelling, 1:41–63

    Article  MATH  MathSciNet  Google Scholar 

  • Riedel U., Schmidt R., Warnatz J. (1992) Different levels of air dissociation chemistry and Its coupling with flow models. In: Bertin JJ, Periaux, J. Ballmann, J. (Ed), Advances in Hypersonics — Vol. 2: Modelling Hypersonic Flows. Birkhäuser, Boston

    Google Scholar 

  • Schmidt D. (1996) Modellierung reaktiver Strömungen unter Verwendung automatisch reduzierter Reaktionsmechanismen, PhD Thesis, Universität Heidelberg

    Google Scholar 

  • Schmidt D., Segatz J., Riedel U., Warnatz J., (1996) Simulation of Laminar Methane-Air Flames using Automatically Simplified Chemical Kinetics, Comb. Sci. Techn., 1996, Vol. 113–114

    Google Scholar 

  • Smooke M. D. (Ed) (1991) Reduced kinetic mechanism an asymptotic approximations for methane-air flames. Lecture notes in physics 384, Springer, New York

    Google Scholar 

  • Taylor S. C. (1991) Ph.D. Thesis, University of Leeds UK

    Google Scholar 

  • Tsuboi T., Wagner H. G. (1974) 15th Symp. (Int.) on Combustion; The Combustion Institute Pittsburgh, PA, pp. 883–890

    Google Scholar 

  • Vagelopoulos C. M., Egolfopoulos F. N., Law C. K. (1994) 25th Symp. (Int.) on Combustion, The Combustion Institute Pittsburgh, PA, pp. 1341–1347

    Google Scholar 

  • Wade A. S., Ingham D. B., Kyne A. G., Mera N. S., Pourkashanian M., Wilson C. W. (2004) Optimisation of the Arrhenius Parameters in a Semi Detailed Mechanism for Jet Fuel Thermal Degradiation using a Genetic Algorithm IGTI/ASME GT2004-53367

    Google Scholar 

  • Warnatz, J. (1981) The structure of laminar alkane-, alkene-, and acetylene flames. Proc Comb Inst 18:369

    Google Scholar 

  • Warnatz J. (1983) The Mechanism of High Temperature Combustion of Propane and Butane. Combustion Sci. and Tech. 34(1–6), 177

    Google Scholar 

  • Warnatz, J. (1984a), Rate Coefficients in the C/H/O System. In: Gardiner, W.C. Jr. (Hrsg.), Combustion Chemistry, Kapitel 5, 197–360. Springer Verlag, New York

    Google Scholar 

  • Warnatz J. (1984b) Critical survey of elementary reaction rate coefficients in the C/H/O system. In: Gardiner WC jr. (Ed) Combustion chemistry. Springer-Verlag, New-York

    Google Scholar 

  • Warnatz J. (1987) Production and homogeneous selective reduction of NO in combustion processes. In: Zellner R (Ed) Formation, distribution, and chemical transformation of air pollutants. DECHEMA, Frankfurt, S 21

    Google Scholar 

  • Warnatz J., Maas U., Dibble (1997) Technische Verbrennung, Springer Verlag Heidelberg berlin New York

    Google Scholar 

  • Westbrook C. K., Dryer F. L. (1984), Chemical Kinetic Modeling of Hydrocarbon Combustion, Progress in Energy and Combustion Science, 10:1–57 (1980)

    Article  Google Scholar 

  • Westbrook C. K., Warnatz J., Pitz W. J. (1988) A detailed Chemical Kinetic Reaction Mechanism for the Oxidation of iso-Octane and n-Heptane over an Extended Temperature Range and Its Application to Analysis of Engine Knock., Proc. Combust. Inst. 22, 893

    Google Scholar 

  • Yetter R. A., Dryer F. L., Rabitz H., (1991), A Comprehensive Reaction Mechanism for Carbon Monoxide/Hydrogen/Oxygen Kinetics, Combustion Science and Technology, 79:97–128

    Google Scholar 

  • Zeuch T. (2003), Reaktionskinetik von Verbrennungsprozessen in der Gasphase: Spektroskopische Untersuchungen der Geschwindigkeit, Reaktionsprodukte und Mechanismen von Elementarreaktionen und die Modellierung der Oxidation von Kohlenwasserstoffen mit detaillierten Reaktionsmechanismen, Diss. Uni Göttingen

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Reaktionsmechanismen. In: Technische Verbrennung. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34334-2_6

Download citation

Publish with us

Policies and ethics