Skip to main content

Emissionen der Verbrennung von Kohlenwasserstoffen

  • Chapter
Technische Verbrennung
  • 11k Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Al-Halbouni A., Giese A., Flamme M., Brune M. (2003) „Flameless Oxidation and Continued Staged Air Combustion Systems for Gas Turbines“, Clean Air 2003, Lisbon, Portugal

    Google Scholar 

  • Alkemade V., Homann K. H. (1989) Formation of C6H6 isomers by recombination of propynyl in the system sodium vapour/propynylhalide. Z Phys Chem NF 161:19

    Google Scholar 

  • Baulch D. L., Cobos C. J., Cox A. M., Frank P., Haymann G., Just T. Kerr J. A. Murrels T., Pilling M. J., Troe J., Walker R. W., Warnatz J. (1994) Compilation of rate data for combustion modelling Supplement I. J Phys Chem Ref Data 23:847

    Article  Google Scholar 

  • Bartok W., Engleman V. S., Goldstein R., del Valle E. G. (1972) Basic kinetic studies and modeling of nitrogen oxide formation in combustion processes. AIChE Symp Ser 68(126):30

    Google Scholar 

  • Bengtson K.U. (1998) Experimental and Numerical Study of the NOx Formation in High pressure jet-stirred reactors, Dissertation ETH Zürich

    Google Scholar 

  • Bockhorn H., Schäfer T. (1994) Growth of soot particles in premixed flames by surface reactions. In: Bockhorn, H. (ed), Soot formation in combustion. Springer, Berlin/Heidelberg

    Google Scholar 

  • Böhm H., Hesse D., Jander H., Lüers B., Pietscher J., Wagner H. G., Weiss M. (1989) The influence of pressure and temperature on soot formation in premixed flames. Proc Comb Inst 22:403

    Google Scholar 

  • Böhm H., Jander H., Tanke D. (1998) PAH growth and soot formation in the pyrolysis of acetylene and benzene at high temperatures and pressures. Proc Comb Inst 27:1605

    Google Scholar 

  • Bradley D., Dixon-Lewis G., El-Din Habik S., Mushi E. M. J. (1984) Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1984, p. 931

    Google Scholar 

  • Brookes S. J., Moss J. B. (1999) Combust. Flame. 116:486 (1999).

    Article  Google Scholar 

  • Calcote H.F. (1981) Combust. Flame 42:215–242

    Article  Google Scholar 

  • Colket M.B., Hall R. J. (1994) in Soot Formation in Combustion: Mechanisms and Models (H. Bockhorn, Ed.), Springer-Verlag, Heidelberg, 1994, pp.442–468

    Google Scholar 

  • Costa M., Ruão M., Carvalho M. G. (1995) „On the Influence of Flue-Gas Recirculation on Pollutant Emissions from a Small-Scale Laboratory Furnace“, 14th International Symposium on Combustion Processes, Czestochowa

    Google Scholar 

  • Dakhel P. M., Lukachko S. P., Waitz I. A., Miake-lye R. C., Brown R. C. (2005) Post-Combustion Evolution of Soot Propeties in an Aircraft Engine, IGTI/ASME GT2005-69113

    Google Scholar 

  • Dean A. M., Hanson R. K., Bowman C. T. (1990) High temperature shock tube study of reactions of CH and C-atoms with N2. Proc Comb Inst 23:259

    Google Scholar 

  • Du J., Axelbaum R. L. (1995) Combustion and Flame, Vol. 100, 1995, pp. 367–375

    Article  Google Scholar 

  • Eberius H., Just T., Kelm S., Warnatz J., Nowak U. (1987) Konversion von brennstoffgebundenem Stickstoff am Beispiel von dotierten Propan-Luft-Flammen. VDI-Berichte 645:626

    Google Scholar 

  • Fenimore C. P. (1979) Studies of fuel-nitrogen in rich flame gases. Proc Comb Inst 17:661

    Google Scholar 

  • Frenklach M., Clary D. (1983) Ind Eng Chem Fundam 22:433

    Article  Google Scholar 

  • Frenklach M., Wang H. (1991a) Twenty-third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1991, pp.1559–1566

    Google Scholar 

  • Frenklach M., Wang H. (1991b) Detailed modeling of soot particle nucleation and growth. Proc Comb Inst 23:1559

    Google Scholar 

  • Frenklach M., Wang H. (1994) in Soot Formation in Combustion: Mechanisms and Models (H. Bockhorn, Ed.), Springer-Verlag, Heidelberg, 1994, pp.165–189

    Google Scholar 

  • Glarborg P., Miller J. A., Kee R. J. (1986) Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors. Comb Flame 65:177

    Article  Google Scholar 

  • Griebel P. (1997) Untersuchung zur schadstoffarmen atmosphärischen Verbrennung in einem Fett-Mager Brennkammersektor für Flugtriebwerke, DLR Forschungsbericht 97–48

    Google Scholar 

  • Griebel P., Behrendt T., Hassa C., Lückerath R., Bergmann V., Stricker W., Zarzalis N. (1995) Untersuchung eines atmosphärischen Fett-Mager-Brennkammersektors für Flugtriebwerke, VDI Berichte Nr. 1193, S. 589–596

    Google Scholar 

  • Griebel P., Fischer M., Hassa C., Magens E., Nannen H., Winanday A., Chrysostomou A., Meier U., Stricker W. (1997) Experimental Investigation of an Atmospheric Rectangular Rich Quench Lean Combustor Sector for Aeroengines, ASME 97-GT-146

    Google Scholar 

  • GRI-Mech 3.0: Smith, Gregory, P., Golden, David M., Frenklach, Michael, Moriarty, Nigel W., Eiteneer, Boris, Goldenberg, Mikhail, Bowman, Thomas C., Hanson, Ronald K. Song, Soonho, Gardiner Jr., William C., Lissianski, Vitali V., Zhiwei Q. in: http://www.me.berkeley.edu/gri-_mech

    Google Scholar 

  • Hall R. J., Smooke M. D., Colket M. B. (1997) in Physical and Chemical Aspects of Combustion: A Tribute to Irvin Glassman (F.L. Dryer and R.F. Sawyer, Eds.), Gordon and Breach, Amsterdam, 1997, pp.189–230

    Google Scholar 

  • Harris S., Weiner A. M., Blint R. (1988) Combustion and Flame, Vol. 72, 1988, pp. 91–109

    Article  Google Scholar 

  • Haynes B. S., Wagner H. GG. (1981) Prog. Energy Combust. Sci. 7:229–273

    Article  Google Scholar 

  • Hiroyasu H., Kadota T., Arai M. (1983) Bulletin of the JSME 26:569–575

    Google Scholar 

  • Kaplan C. R., Kilasanath K. (2001) Combustion and Flame, Vol. 124, 2001, pp. 275–294

    Article  Google Scholar 

  • Katta V. R., Roquemore W. M. (1995) Combustion and Flame, Vol. 100, No. 1, 1995, p. 61

    Article  Google Scholar 

  • Katta V. R., Roquemore W. M. (2004) Simulation of PAHs in Trapped-Vortex Combustor, IGTI/ASME GT2004-54165

    Google Scholar 

  • Katta, V. R., Blevins, L. G., Roquemore, W. M. (2003) PAH Formation in an Inverse Diffusion Flame, AIAA Paper No. 2003-0666, Reno, NV

    Google Scholar 

  • Kennedy I. M. (1997) Prog. Energy Combust. Sci. 23:95

    Article  Google Scholar 

  • Lechner Ch., Seume J. (2003): stationäre Gasturbinen, Springer Berlin Heidelberg New York, VDI

    Google Scholar 

  • Lee K. B., Thring M. W., Beer J. M. (1962) Combust. Flame 6:137

    Article  Google Scholar 

  • Lefebvre A. H. (1984) Gas Turbine Combustion, Hemisphere Publishing Cooperation, New York Washington Philadelphia London Leung K. M., Lindstedt R. P., Jones W.P. (1991) Combust. Flame 87:289–305

    Google Scholar 

  • Lin K.-C., Faeth G. M. (1996) Journal of Propulsion and Power, Vol. 12, 1996, pp. 10–17

    Article  Google Scholar 

  • Lindstedt R. P. (1994) in Soot Formation in Combustion: Mechanisms and Models (H. Bockhorn, Ed.), Springer-Verlag, Heidelberg, 1994, pp.417–439

    Google Scholar 

  • Malte P. C., Pratt D. T. (1974) Measurement of atomic oxygen and nitrogen oxides in jet-stirred combustion. Proc Comb Inst 15:1061

    Google Scholar 

  • Mauss F., Bockhorn H., Z. (1995) Phys. Chem. 188:45

    Google Scholar 

  • Mauss F., Schäfer T., Bockhorn H. (1994) Combust. Flame 99:697–705.

    Article  Google Scholar 

  • McKinnon J. T. (1989) Chemical and physical mechanism of soot formation. Ph. D. Dissertation, MIT, Cambridge, Massachusetts

    Google Scholar 

  • Meyer T. R., Roy S., Gogineni S. P., Belovich V. M., Cororan E., Gord J. R. (2004) OH PLIF and Soot Volume Fraction Imaging in the Reaction zone of a liquid-fueled Model Gas-Turbine Combustor IGTI/ASME GT2004-54318

    Google Scholar 

  • Puri R., Santoro R. J., Smyth K. C. (1994) Combust. Flame 97:125

    Article  Google Scholar 

  • Quay B., Lee T.-W., Ni T., Santoro R. J. (1994), “Spatially Resolved Measurements of Soot Volume Fraction Using Laser-Induced Incandescence,” Combust. Flame 97:384–392

    Article  Google Scholar 

  • Richter H., Howard J. B. (2000) Prog. Energy Combust. Sci. 26:565

    Article  Google Scholar 

  • Riedel U., Schmidt R., Warnatz J. (1992) Different levels of air dissociation chemistry and Its coupling with flow models. In: Bertin JJ, Periaux, J. Ballmann, J. (Ed), Advances in Hypersonics — Vol. 2: Modelling Hypersonic Flows. Birkhäuser, Boston

    Google Scholar 

  • Roquemore W. M., Katta V. R. (2000) Journal of Visualization, in press Jan. 2000

    Google Scholar 

  • Rutar T., Malte P.C. (2001) NOx Formation in High-Pressure Jet-Stirred Reaktors with significance to Lean-premixed Combustion of Gasturbines, IGTI ASME 2001-GT-0067

    Google Scholar 

  • Santoro R. J., Yeh T. T., Horvath J. J., Semerjian H. G. (1987) Combustion Science and Technology, Vol. 53, 1987, pp. 89–115

    Google Scholar 

  • Schlieper M., Scherer V., Wirtz S. (2003) ”Low-NOx Combustion of Liquid Fuels in Gas Turbines Using Flameless Oxidation, Clean Air 2003, Lisbon, Portugal

    Google Scholar 

  • Smooke M. D., Mcenally C. S., Pfefferle L. D., Hall R. J., Colket M. B. (1999) Combustion and Flame, Vol. 117, 1999, pp. 117–139

    Article  Google Scholar 

  • Stein S. E., Walker J. A., Suryan M. M., Fahr A. (1991) A new path to benzene in flames. Proc Comb Inst 23:85

    Google Scholar 

  • Sugiyama G. (1994) Proceedings of the Combustion Institute, The Combustion Institute, PA, Vol. 25, 1994, pp. 601–608

    Google Scholar 

  • Van der Wal R. L., Weiland K. J. (1994) „Laserinduced incandescence: Development and characterization towards a measurement of soot-volume fraction,“ Appl. Phys. B 59:445–452

    Article  Google Scholar 

  • Vaz D., 1998, „Implementac∼o da Estrat’gia de Recirculac∼o de Gases para a Reduc ∼o das Emisso es dos O xidos de Azoto“, MSc. Thesis, Instituto Superior T’cnico, Lisbon, Portugal

    Google Scholar 

  • Vaz D. C., Borges A. R. J., van Buijtenen J. P., Spliethoff H. (2004) On the Stability Range of a Cylindrical Combustor for Operation in the FLOX Regime, IGTI/ASME T2004-53790

    Google Scholar 

  • Wagner HGg (1979) Soot formation in combustion. Proc Comb Inst 17:3

    Google Scholar 

  • Wang H., Frenklach M. (1997) Combustion and Flame, Vol. 110, No. 1, 1997, p. 173

    Article  Google Scholar 

  • Warnatz J. (1981) Concentration-, pressure-, and temperature dependence of the flame velocity in the hydrogen-oxygen-nitrogen mixtures. Comb Sci Technol 26:203

    Google Scholar 

  • Warnatz J., Maas U. (1993) Technische Verbrennung, Springer Verlag Berlin Heidelberg New York

    Google Scholar 

  • Wolfrum J. (1972) Bildung von Stickstoffoxiden bei der Verbrennung. Chemie-Ingenieur-Technik 44:656

    Article  Google Scholar 

  • Wünning J. (1993) Flammlose Oxidation in Strahlheizrohren, 16. Deutscher Flammentag, VDI Berichte 1090, 1993, S. 487–494

    Google Scholar 

  • Wünning J. G. (1996) Flammlose Oxidation von Brennstoff, Dissertation, Aachen

    Google Scholar 

  • Wünning J.A., Wünning J.G. (1992) Brenner für die flammlose Oxidation mit geringer NO-Bildung auch bei höchster Luftvorwärmung, Gas Wärme International, Band 41 (1992), Heft 10, S. 438–444

    Google Scholar 

  • Wünning J.A., Wünning J.G. (1997) Flameless Oxidation to Reduce Thermal NOFormation, Prog. Energy Combust. Sci. Vol. 23, Seite 81–94

    Article  Google Scholar 

  • Zeldovich Y. B. (1946) The oxidation of nitrogen in combustion and explosions. Acta Physicochim. USSR 21:577

    Google Scholar 

  • Zeuch T. (2003) Reaktionskinetik von Verbrennungsprozessen in der Gasphase: Spektroskopische Untersuchungen der Geschwindigkeit, Reaktionsprodukte und Mechanismen von Elementarreaktionen und die Modellierung der Oxidation von Kohlenwasserstoffen mit detaillierten Reaktionsmechanismen, Diss. Uni Göttingen

    Google Scholar 

  • Zhang Q. L., O’Brien S. C., Heath J. R., Liu Y., Curl R. F., Kroto H. W., Smalley R. E. (1986) Reactivity of large carbon clusters: Spheroidal carbon shells and their possible relevance to the formation and morphology of soot. J Phys Chem 90:525

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Emissionen der Verbrennung von Kohlenwasserstoffen. In: Technische Verbrennung. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34334-2_17

Download citation

Publish with us

Policies and ethics