Skip to main content

Die Verbrennung fester Brennstoffe

  • Chapter
Technische Verbrennung
  • 11k Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abbott M. B., Basco D. (1989) Computational Fluid Dynamics, An Introduction for Engineers. Longman House, Burnt Mill, Harlow, UK: Longman Scientific & Technical, 1989, ISBN 0-582-01365-8

    Google Scholar 

  • Arscott J. A., Gibb J. and Jenner R. (1973) The application of N-E diffusion theory and Monte-Carlo methods to predict the heat transfer performance of a 500 MW power station boiler from isothermal data, in: Proceedings Combustion Institute European Symposium 674–679

    Google Scholar 

  • Baerns M., Hofmann H., Renken A. (1987), Chemische Reaktionstechnik, Stuttgart Thieme Verlag

    Google Scholar 

  • Banin V. E, Commissaris F. A. C. M., Moors J. H. J., Veefkind A. (1997a) Kinetic Study of Pulverized Coal Combustion at High Pressure Using a Shock Tube. Combustion and Flame, 108(1–2):1–8

    Article  Google Scholar 

  • Banin V. E., Moors J. H. J., Veefkind A. (1997b) Kinetic Study of High-Pressure Pulverized Coal Char Combustion: Experiment and Modelling. Fuel, 76(10):945–949

    Article  Google Scholar 

  • Baum M. M., Street P. J. (1971) Predicting the Combustion Behaviour of Coal Particles, Comb. Sci. Technology, 3, 231–243

    Google Scholar 

  • Benim A. C. (1988) A finite Element Solution of Radiative Heat Transfer in Participating Media Utilizing the Moment Method, Computer Methods in applied Mechanics and Engineering 67 (1988) 1–14

    Article  MATH  Google Scholar 

  • Benim A. C. (1990), Finite Element Analysis of confined Turbulent Swirling Flows, Int. Journ. for Num. Methods in Fluids, vol. 11 697–717

    Article  MATH  Google Scholar 

  • Benim A. C., Epple B., Krohmer B. (2005) Modelling of pulverised coal combustion by an Eulerian-Eulerian two-phase flow formulation, International Journal of Progress in Computational Fluid Dynamics, vol. 5, no. 6, pp. 345–361

    Article  Google Scholar 

  • Bews L. M., Hayhurst A. N., Richardson S. M., Talor S. G. (2001) The Order, Arrhenius Parameters and Mechanism of the Reaction Between Gaseous Oxygen and Solid Carbon, Combust. Flame 124, 231–245

    Article  Google Scholar 

  • Bhatia S. K., Perlmutter D. D. (1980) A Random Pore Model for Fluid-Solid Reactions: I. Isothermal, Kinetic Control. American Istitute of Chemical Engineers Journal, 26(3):379–386

    Google Scholar 

  • Bhatia S. K., Gupta J. S. (1992) Mathematical Modelling of Gas-Solid Reactions: Effect of Pore Structure. Reviews in Chemical Engineering, 8:177–258

    Google Scholar 

  • Boysan F., Ayers W. H. Swithenbank J. (1982) A fundamental mathematical modeling approach to cyclone design, Trans. IchemE, 60, 222–230

    Google Scholar 

  • Chelliah H., Miller F., Pantano D., Kasimov A. (1999) Heterogeneous Combustion of Porous Graphite in Normal and Microgravity, Fifth International Microgravity Combustion Workshop, Cleveland Ohio, May 18–20, 233–236

    Google Scholar 

  • Crowe C. (1979) „Gas-particle flow,“ in Pulverized-Coal Combustion and Gasification, L. D. Smoot and D. T. Pratt, Eds. New York and London: Plenum Press, 1979, ch. 6, pp. 107–119, ISBN 0-306-40084-7

    Google Scholar 

  • Crowe C., Smoot L. (1979) Multicomponent conservation equations, in Pulverized-Coal Combustion and Gasification, L. D. Smoot and D. T. Pratt, Eds. New York and London: Plenum Press, 1979, ch. 2, pp. 15–54, ISBN 0-306-40084-7

    Google Scholar 

  • Delisle A. J., Miller F. J., Chelliah H. K. (2003) Combustion of Porous Graphite Particles in Oxygen Enriched Air, Seventh International Microgravity Combustion Workshop, Cleveland Ohio, June 3–6, 9–12

    Google Scholar 

  • De Marco, A.G., Loockwood, F.C. (1975) A New Flux Model for the Calculation of Radiation in Furnaces. La rivista die combustibili, Vol. 29, No. 5–6, pp. 184–196

    Google Scholar 

  • Dryer F., Glassmann I. (1988) High-temperature oxidation of CO and CH4,” Combustion and Flame, vol. 73, pp. 233–249

    Article  Google Scholar 

  • Durst F., Milojevic D., Schönung B. (1982) Eulerian and Lagragian Predictions of Particulate Two-Phase Flows; a numerical Study, Appl. Math. Modell, 9, 101–115

    Google Scholar 

  • Erickson T. A., D.K. Ludlow D. K., S.A. Benson S. A. (1991) Intersaction of Sodium, Sulfur, and Silicia During Coal Combustion, Energy & Fuels 5, 539–547

    Article  Google Scholar 

  • Essenhigh R. H. (1981) Fundamentals of Coal Combustion. In M.A. Elliot, editor, Chemistry of Coal Utilization, chapter 19, pages 1153–1312. John Wiley and Sons

    Google Scholar 

  • Essenhigh R. H. (1988) An Integration Path for the Carbon-Oxygen Reaction with Internal Reaction. Proceedings of the Combustion Institute, 22:89–96

    Google Scholar 

  • Essenhigh R. H. (1994) Influence of Initial Particle Density on the Reaction Mode of Porous Carbon Particles. Combustion and Flame, 99:269–279

    Article  Google Scholar 

  • Field M. (1969) Rate of combustion of size-grate fractions of char from a low rank coal between 1200–2000 K, Combustion and Flame, vol. 13, pp. 237–252

    Article  Google Scholar 

  • Field M. A., Gill D. W., Morgan B. B., Hawskley P. G. W. (1967), Combustion of Pulverized Coal, pp 189–192 und 329–345, The British Coal Utilization Research Assoc., Leatherland

    Google Scholar 

  • Fiveland, W.A. (1988). Three-Dimensional Radiative Heat Transfer Solutions by the Discrete Ordinates Method. AIAA J. Thermophysics, Vol. 2, No. 4, pp. 309–316

    Article  Google Scholar 

  • Fletcher T. (1993) Swelling properties of coal chars during rapid pyrolysis and combustion, Fuel, vol. 72, no. 11, pp. 1485–1495

    Article  Google Scholar 

  • Fletcher T. H., Kerstein A. R., Grant D. M., Pugmire R. J. (1990) Chemical model for devolatilization. 2. Temperature and heating rate effects on product yields, Energy & Fuels, vol. 4, pp. 54–60

    Article  Google Scholar 

  • Fletcher T., Solum M. S., Pugmire R., Grant D. M. (1992) Chemical structure of char in the transition from devolatilization to combustion, Energy & Fuels, vol. 6, pp. 643–650

    Article  Google Scholar 

  • Förtsch D. (2003) A kinetic model of pulverised coal combustion for computational fluiddynamics — Ein kinetisches Modell der Kohlenstaubverbrennung für die numerische Strömungsberechnung,” Selbstverlag IVD, Universität Stuttgart, Inventar-Nr. 1/4562

    Google Scholar 

  • Förtsch D., Kluger F., Schnell U. (1998) A kinetic model for the prediction of NO emissions from staged combustion of pulverized coal, in Twenty Seventh Symposium (International) on Combustion/The Combustion Institute, Pittsburgh, 1998, pp. 3037–3044

    Google Scholar 

  • Förtsch D., Essenhigh R. H., Froberg R. W., Schnell U., Hein K. R. G. (2000) Influence of the Density Profile on the Combustion Characteristics of Carbon: A Theoretical Study. Proceedings of the Combustion Institute, 28:2251–2260

    Article  Google Scholar 

  • Gavalas G. R. (1980) „A random capillary model with application to char gasification at chemically controlled rates,“ American Institute of Chemical Engineers Journal, vol. 26, pp. 577–585

    MathSciNet  Google Scholar 

  • Gavalas G. R. (1981) Analysis of Char Combustion Including the Effect of Pore Enlargement. Combustion Science and Technology, 24:197–210

    Google Scholar 

  • Gill A. (2001) CFD-Simulation von Verbrennungsprozessen, Proceedings of the VDI-Workshop Computersimulation von Strömungen und Wärmetransportprozessen in der Energietechnik, Paper 18, VDI Düsseldorf

    Google Scholar 

  • Glassmann I. (1996) Combustion, 3rd ed. San Diego, CA: Academic Press, 1996, ISBN 0-122-85852-2. BIBLIOGRAPHY 40

    Google Scholar 

  • Görner, K. (1991) Technische Verbrennungssysteme. Springer-Verlag Berlin/Heidelberg/New York

    Google Scholar 

  • Gosman A. D. and Lockwood F. C. (1973) Incorporation of a flux model for radiation into a fiuite-difference procedure for furnace calculations, in: Proceedings 14th International Symposium on combustion, PA 661–671

    Google Scholar 

  • Grant D. M., Pugmire R. J., Fletcher T. H., Solum M. S., Kerstein A. R. (1992) „Chemical model for devolatilization. 3. Use of 13C NMR data to predict effects of coal type,“ Energy & Fuels, vol. 6, pp. 414–431

    Article  Google Scholar 

  • Gray D., Cogoli J. G., Essenhigh R. H. (1974) „problems in pulverized coal and char combustion,“ Advances in Chemical Series, vol. 13, pp. 72–91

    Article  Google Scholar 

  • Hemsath, K. H. (1969) Zur Berechnung der Flammenstrahlung, Universität Stuttgart, Diss.

    Google Scholar 

  • Hertzberg M., Zlochower I. A. (1990a) Devolatilization Rates and Intraparticle Wave Structure During the Combustion of Pulverized Coals and Polvmethylmethacrylate, Proc. Combust. Inst. 23, 1247–1255

    Google Scholar 

  • Hertzberg M., Zlochower I. A. (1990b) Devolatilization Wave Structures and Temperatures for the Pyrolysis of Polymethylmethacrylate, Amonium Perchlorate, and Coal at Combustion Level Heat Fluxes, Proc. Combust. Inst. 23, 1247–1255

    Google Scholar 

  • Hobbs, M. L., Radulovic, P. T., Smoot, L. D. (1993) Combustion and gasification of Coals in fixedbeds. Progr Energy Comb Sci 19:505

    Article  Google Scholar 

  • Hottel H. C., Sarofim A. F. (1967) Radiative Transfer, McGraw-Hill, New York

    Google Scholar 

  • Hong J. (2000) Modeling Char Oxidation as a Function of Pressure Using an Intrinsic Langmuir Rate Equation. PhD thesis, Brigham Young University

    Google Scholar 

  • Hurt R., Sun J., Lunden M. (1998) „A kinetic model of carbon burnout in pulverized coal combustion,“ CaF, vol. 113, no. 1–2, pp. 181–197

    Google Scholar 

  • Ishida M., Wen C. Y. (1971) Comparison of Zone-Reaction Model and Unreacted-Core Shrinking Model in Solid-Gas Reactions-I. Isothermal Analysis. Chemical Engineering Science, 26:1031 ff.

    Google Scholar 

  • Jones W., Lindstedt R. (1972) „Global reaction schemes for hydrocarbon combustion,“ Proceedings of the Combustion Institute, vol. 14, pp. 987–1003

    Google Scholar 

  • Katalambula H. H., Hayashi J., Chiba T. (1997) Dependence of Single Coal Particle Ignition Mechanism on the Surrounding Volatile Matter Cloud, Energy & Fuels 11, 1033–1039

    Article  Google Scholar 

  • Knaus H., Schneider R., Han X., Ströhle J., Schnell U., Hein K. (1997) „Comparison of different radiation heat transfer models in coal-fired utility boiler simulations using boundary fitted and cartesian grids,“ in Proceedings of the 4th Internat. Conference on Technologies and Combustion for a Clean Environment, Lisbon, July 1997, pp. 1–8

    Google Scholar 

  • Knaus H., Schnell U., Hein K. R. G. (2001a) Evaluation of the 3D-furnace simulation code AIOLOS by comparing CFD predictions of gas compositions with in-furnace measurements in a 210MW coal-fired utility boiler, Progress in Computational Fluid Dynamics, Vol. 1, Nos 1/2/3, pp. 62–69

    Google Scholar 

  • Knaus H., Schnell U., Hein K. R. (2001b) „On the modelling of coal combustion in a 550 MWel coal-fired utility boiler,“ International Journal of Progress in Computational Fluid Dynamics, vol. 1, no. 4, pp. 194–207

    Google Scholar 

  • Kobayashi H., Howard J. B., Sarofim A. F. (1976) „Coal devolatilization at high temperatures“, Sixteenth Symposium (International) on Combustion: at the Massachusets Institute of Technology, Cambridge, Massachusetts, August 1976

    Google Scholar 

  • Kuo K. K. (2005) Principles of Combustion. Hoboken, New Jersey: John Wiley & Sons, Inc., 2005, iSBN 0-471-04689-2

    Google Scholar 

  • Lacey D. T., Bowen J. H., and Basden K. S. (1965) Theory of non-catalytic gassolid reactions. Industrial and Engineering Chemistry Fundamentals, 4:275 ff.

    Google Scholar 

  • Laurendeau N. M. (1978), Heterogeneous Kinetics of Coal and Char Gasification and Combustion, Prog. Energy Combust. Sci. 4, 221–270

    Article  Google Scholar 

  • Langmuir I. (1915), „Chemical reactions at low pressure,“ A Journal of the American Chemical Society, vol. 37, pp. 1139–1366

    Article  Google Scholar 

  • Lee J. C., Yetter R. A., Dryer F. L. (1995) Combustion and Flame 101:387

    Article  Google Scholar 

  • Lockwood F. C., Shah N. G. (1981) A New Radiation Solution Method for Incorporation in General Combustion Prediction Procedures. 18th Symp. (Int.) on Comb., The Comb. Inst., pp 1405–1414

    Google Scholar 

  • Magel H., Schnell U., Hein K. (1996) „Simulation of detailed chemistry in a turbulent combustor flow,“ in Twenty-sixth Symposium (International) on Combustion/The Combustion Institute, 1996, pp. 67–74

    Google Scholar 

  • Maloney D. J., Monazam E. R., Woodruff S. D., Lawson L. O. (1991) Measurements and Analysis of Temperature Histories and Size Changes of Single Carbon and Coal Particles During the Early Stages of Heating and Devolatilization, Combust. Flame 84, 210–220

    Article  Google Scholar 

  • Matthews K. J. (1976) Gasel: a two-dimensional flame prediction model, Rept. No. R/M/R232, Central Electricity Generating Board (CEGB)

    Google Scholar 

  • Müller-Erlwein (1998) Chemische Reaktionstechnik, B. G. Teubner Stuttgart Leipzig

    Google Scholar 

  • Özisik M.N. (1973) Radiative Transfer and Interactions with Conduction and Convection. John Wiley & Sons, New York, Chap. 9, pp. 343–346

    Google Scholar 

  • Olson S. L., Kashiwagi T., Fujita O., Kikuchi M., Ito K. (2001) Experimental Observation of Spot Radiative ignition and Subsequent Three-Dimensional Flame Spread over Thin Cellulose Fuels, Combust. Flame 125, 852–864

    Article  Google Scholar 

  • Papula L. (2001) Mathematik für Ingenieure und Naturwissenschaftler, Bd. 2, 10. Auflage, Vieweg-Verlag Braunschweig Wiesbaden

    Google Scholar 

  • Peters A., Weber R. (1997) Mathematical modeling of a 2.4 MW swirling pulverized coal flame, Combust. Sci. and Tech., vol. 122, pp. 131–182

    Google Scholar 

  • Phuoc T. X., Mathur M. P., Ekmann J. M. (1993) High-Energy Nd-Yag Laser Ignition of Coals: Experimental Observations, Combust. Flame 93, 19–30

    Article  Google Scholar 

  • Raithby G. D., Chui E. H. (1990) A Finite Volume Method for Precicting a Radiant Heat Transfer in Enclosures with Participating Media. J. of Heat Transfer, Vol. 112, pp. 415–423

    Article  Google Scholar 

  • Reade W., Morris K., Hecker W. (1995) „Modeling the effects of burnout on high temperature char oxidation,“ Coal Science, pp. 639–642

    Google Scholar 

  • Richter W., Bauersfeld G. (1974) Radiation models for use in complete mathematical furnace models, in: Proceedings International Flame Research Foundation (IFRF), 3rd Members Conference, IJmuiden, The Netherlands Ch. II.

    Google Scholar 

  • Richter, W., Heap, M. (1981). A Semistochastic Method for the Prediction of Radiative Heat Transfer in Combustion Chambers, Western States Section/The Comb. Inst., 1981 Spring Meeting, paper 81–17

    Google Scholar 

  • Risio B., Schnell U., Hein K., Förtsch D., Bundschuh A., Klinge T., and Derichs W. (1998) „Industrial-scale validation of the 3D-furnace simulation code AIOLOS,“ PVP, vol. 377-2, pp. 93–99

    Google Scholar 

  • Risio B., Blum F., Berreth A., Schnell U., Hein K. (2003) „Evolutionäre Algorithmen als innovative Optimierungswerkzeuge für die Kraftwerkstechnik,“ VDI-Berichte Nr. 1750, vol. 377-2, pp. 663–668, 2003, ISBN 3-18-091750-4

    Google Scholar 

  • Sampath R., Maloney D. J., Zondolo J. W., Woodruff S. D., Yeboah Y. D. (1996) Measurements of Coal Particle Shape, Mass, and Temperature Histories: Impact of Particle Irregularity on Temperature Predictions and Measurements, Proc. Combust. Inst. 26, 3179–3188

    Google Scholar 

  • Sampath R., Maloney D. J., Zondolo J. W. (1998) Evaluation of Thermophysical and Thermochemical Heat Requirements for Coals at Combustion Level Heat Fluxes, Proc. Combust. Inst. 27, 2915–2923

    Google Scholar 

  • Schröder, K. (1966) Große Dampfkraftwerke, Band 3 Teil A Die Kraftwerksausrüstung, Springer Verlag Berlin Heidelberg New York

    Google Scholar 

  • Siddall R. G. (1972) Flux methods for the analysis of radiant heat transfer, in: Proceedings 4th Symposium on Flames in Industry, Paper 16, Institute of Fuel, London

    Google Scholar 

  • Simons G. A. (1979) The Structure of Coal Char: Part II. Pore Combination. Combustion Science and Technology, 19:227–235.

    Google Scholar 

  • Simons G. A. (1983) The Role of Pore Structure in Coal Pyrolysis and Gasification. Progress in Energy and Combustion Science, 9:269–290

    Article  Google Scholar 

  • Skinner F., Smoot L. (1979) Heterogeneous reactions of char and carbon, in Pulverized-Coal Combustion and Gasification, L. D. Smoot and D. T. Pratt, Eds. New York and London: Plenum Press, 1979, ch. 9, pp. 149–167, ISBN 0-306-40084-7

    Google Scholar 

  • Smith I. W. (1982) The Combustion Rates of Coal Chars: A Review, Proc. Combust. Inst. 19, 1045–1065

    Google Scholar 

  • Solomon P. R.; Hamblen, D. G.; Carangelo, R. M.; Serio, M. A.; Deshpande, G. V. (1987) A general model of coal devolatilization. ACS paper 58/WP No 26

    Google Scholar 

  • Solomon P. R., Fletcher T., Pugmire R. (1993) „Progress in coal pyrolysis,“ Fuel, vol. 72, no. 5, pp. 587–597

    Article  Google Scholar 

  • Smoot, L. D. (1993) Fundamentals of coal combustion. Elsevier, Amsterdam/Oxford/New York

    Google Scholar 

  • Sotirchos S. V., Burganos V. N. (1986) Intraparticle Diffusion and Char Combustion. Chemical Engineering Science, 41:2599–1609.

    Article  Google Scholar 

  • Spalding D. B. (1982) The Shadow Method of Particle Size Calculation in Two Phase Combustion, Proc. Of the Ninenteenth Symp. (Int.) on Combustion, The Comb. Institute Pittsburgh, 941–952

    Google Scholar 

  • Speight, J. G.: (1994) The chemistry and technology of coal. Marcel Dekker, Amsterdam/New York

    Google Scholar 

  • Suda T., Kitano K., Ikeda K. (2000), Study on Ignition Mechanism of Single Coal Particle under Micro gravity Condition, Space Forum 6, 259–267

    Google Scholar 

  • Szekely J., and J.W. Evans J. W. (1970) A Structural Model for Gas-Solid Reactions With a Moving Boundary. Chemical Engineering Science, 26:1091–1107

    Article  Google Scholar 

  • Tognotti L., Longwell J. P., Sarofim A. F. (1990) The Products of the High Temperature Oxidation of a Single Char Particle in an Electrodynamic Balance, Proc. Combust. Inst. 23, 1207–1213

    Google Scholar 

  • Tomeczek J. (1994), Coal Combustion, Krieger Publishing Company, Malabar, Florida

    Google Scholar 

  • Turns, S. R. (1996) An introduction to combustion. McGraw-Hill, New York

    Google Scholar 

  • Turns S. R. (2000) An Introduction to Combustion, Mc Graw Hill

    Google Scholar 

  • Valix M. G., Harris D. J., Smith I. W., Trimm D. L. (1992a) The Intrinsic Combustion Reactivity of Pulverized Coal Chars: The Use of Experimental Pore Diffusion Coefficients. Proceedings of the Combustion Institute, 24:1217–1223

    Google Scholar 

  • Valix M. G., Trimm D. L., Smith I. W., Harris D. J. (1992b) Mass Transfer Effects in Coal Combustion. Chemical Engineering Science, 47:1607–1617

    Article  Google Scholar 

  • Wheeler A. (1951) Reaction Rates and Selectivity in Catalyst Pores. Advances in Catalysis, 3:249–327

    Google Scholar 

  • Wakao N., Smith J. M. (1962) Diffusion in Catalyst Pellets. Chemical Engineering Science, 17:825–834

    Article  Google Scholar 

  • Weber R., Dugue J., Sayre A., Peters A. F., Visser B. M. (1992) Measurements and Computations of Quarl Zone Fluid Flow and Chemistry in a Swirling Pulverised Coal Flame, Doc. No. F36/y/20, Int. Flame Reasearch Foundation, Ijumiden

    Google Scholar 

  • Zhao B., Kantorovich I., Bar-Ziv E., Sarofim A. F. (1998) Dynamic Behavior of Flowing Particles in Combustion Environment, Proc. Combust. Inst. 27, 3127–3134

    Google Scholar 

  • Zimont V. L., Trushin Z. (1969) „Total combustion kinetics of hydrocarbon fuels,“ Combustion, Explosion, and Shockwave, vol. 5, no. 4, pp. 391–394.

    Article  Google Scholar 

  • Zinser W. (1985) Zur Entwicklung mathematischer Flammenmodelle für die Verfeuerung technischer Brennstoffe, VDI Fortschrittberichte, Reihe 6, Nr. 171. Düsseldorf: VDI-Verlag GmbH, 1985, ISBN 3-18-147106-2

    Google Scholar 

  • Zygarlicke C. J., McCollor D. P., Benson S. A., Holm P. L. (1992) Ash Particle Size and Composition of Synthetic Coal and Inorganic Mixtures, Proc. Combust. Inst. 24, 1171–1177

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Die Verbrennung fester Brennstoffe. In: Technische Verbrennung. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34334-2_15

Download citation

Publish with us

Policies and ethics